Digital Twin-Driven Thermal Error Prediction for CNC Machine Tool Spindle

被引:6
|
作者
Lu, Quanbo [1 ]
Zhu, Dong [2 ]
Wang, Meng [1 ,3 ]
Li, Mei [1 ]
机构
[1] China Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R China
[2] Sevnce Robot Co Ltd, Chongqing 401123, Peoples R China
[3] Tangshan Polytech Coll, Sch Mech Engn, Tangshan 063299, Peoples R China
关键词
digital twin; thermal error; CNCMT; spindle; LSTM; COMPENSATION;
D O I
10.3390/lubricants11050219
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Traditional methods for predicting thermal error ignore the correlation between physical world data and virtual world data, leading to the low prediction accuracy of thermal errors and affecting the normal processing of the CNC machine tool (CNCMT) spindle. To solve the above problem, we propose a thermal error prediction approach based on digital twins and long short-term memory (DT-LSTM). DT-LSTM combines the high simulation capabilities of DT and the strong data processing capabilities of LSTM. Firstly, we develop a DT system for the thermal characteristics analysis of a spindle. When the DT system is implemented, we can obtain the theoretical value of thermal error. Then, the experimental data is used to train LSTM. The output of LSTM is the actual value of thermal error. Finally, the particle swarm optimization (PSO) algorithm fuses the theoretical values of DT with the actual values of LSTM. The case study demonstrates that DT-LSTM has a higher accuracy than the single method by nearly 11%, which improves the prediction performance and robustness of thermal error.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Digital twin-driven fault diagnosis for CNC machine tool
    Xue, Ruijuan
    Zhang, Peisen
    Huang, Zuguang
    Wang, Jinjiang
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 131 (11): : 5457 - 5470
  • [2] Digital twin-driven fault diagnosis for CNC machine tool
    Ruijuan Xue
    Peisen Zhang
    Zuguang Huang
    Jinjiang Wang
    [J]. The International Journal of Advanced Manufacturing Technology, 2024, 131 : 5457 - 5470
  • [3] Digital twin-driven CNC spindle performance assessment
    Ruijuan Xue
    Xiang Zhou
    Zuguang Huang
    Fengli Zhang
    Fei Tao
    Jinjiang Wang
    [J]. The International Journal of Advanced Manufacturing Technology, 2022, 119 : 1821 - 1833
  • [4] Digital twin-driven CNC spindle performance assessment
    Xue, Ruijuan
    Zhou, Xiang
    Huang, Zuguang
    Zhang, Fengli
    Tao, Fei
    Wang, Jinjiang
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 119 (3-4): : 1821 - 1833
  • [5] A digital twin-driven hybrid approach for the prediction of performance degradation in transmission unit of CNC machine tool
    Yang, Xin
    Ran, Yan
    Zhang, Genbao
    Wang, Hongwei
    Mu, Zongyi
    Zhi, Shengguang
    [J]. ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2022, 73
  • [6] Digital twin-driven virtual commissioning of machine tool
    Wang, Jinjiang
    Niu, Xiaotong
    Gao, Robert X.
    Huang, Zuguang
    Xue, Ruijuan
    [J]. ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2023, 81
  • [7] Spindle Thermal Error Prediction Based on LSTM Deep Learning for a CNC Machine Tool
    Liu, Yu-Chi
    Li, Kun-Ying
    Tsai, Yao-Cheng
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (12):
  • [8] Digital twin-driven lifecycle management for motorized spindle
    Fan, Kaiguo
    Liu, Jiahui
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 135 (1-2): : 443 - 455
  • [9] Digital twin-driven modeling and application of carbon emission for machine tool
    Li, Chengchao
    Ge, Weiwei
    Huang, Zixuan
    Zhang, Qiongzhi
    Li, Hongcheng
    Cao, Huajun
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 133 (11-12): : 5595 - 5609
  • [10] Digital twin-driven modeling and application of carbon emission for machine tool
    Li, Chengchao
    Ge, Weiwei
    Huang, Zixuan
    Zhang, Qiongzhi
    Li, Hongcheng
    Cao, Huajun
    [J]. International Journal of Advanced Manufacturing Technology, 2024,