Similarity Transformations and Nonlocal Reduced Integrable Nonlinear Schrödinger Type Equations

被引:9
|
作者
Cheng, Li [1 ,2 ]
Ma, Wen-Xiu [3 ,4 ,5 ,6 ]
机构
[1] Jinhua Polytech, Normal Sch, Jinhua 321007, Peoples R China
[2] Jinhua Polytech, Key Lab Crop Harvesting Equipment Technol, Jinhua 321007, Peoples R China
[3] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[4] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[5] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[6] North West Univ, Mat Sci Innovat & Modelling, Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
关键词
zero curvature equation; matrix eigenvalue problem; similarity transformation; integrable hierarchy; nonlinear Schrodinger equations; 05.45.Yv; 02.30.Ik; HIERARCHIES; DYNAMICS; SOLITONS; MODEL;
D O I
10.3390/math11194110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present three reduced integrable hierarchies of nonlocal integrable nonlinear Schrodinger-type equations, starting from a given vector integrable hierarchy generated from a matrix Lie algebra of B type. The basic tool is the zero curvature formulation. Three similarity transformations are taken to keep the invariance of the involved zero curvature equations. The key is to formulate a matrix solution to a reduced stationary zero curvature equation such that the zero curvature formulation works for a reduced case.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions
    马文秀
    Chinese Physics Letters, 2022, 39 (10) : 6 - 11
  • [42] On Schrödinger Equations of Okubo Type
    G. Giorgadze
    G. Khimshiashvili
    Journal of Dynamical and Control Systems, 2004, 10 : 171 - 186
  • [43] Nonlocal reduced integrable mKdV-type equations from a vector integrable hierarchy
    Chen, Shou-Ting
    Ma, Wen-Xiu
    MODERN PHYSICS LETTERS B, 2023, 37 (15):
  • [44] Transformations between Nonlocal and Local Integrable Equations
    Yang, Bo
    Yang, Jianke
    STUDIES IN APPLIED MATHEMATICS, 2018, 140 (02) : 178 - 201
  • [45] Dressing for a Novel Integrable Generalization of the Nonlinear Schrödinger Equation
    Jonatan Lenells
    Journal of Nonlinear Science, 2010, 20 : 709 - 722
  • [46] A system of nonlinear evolution Schrödinger equations
    Sh. M. Nasibov
    Doklady Mathematics, 2007, 76 : 708 - 712
  • [47] The classical nonlinear Schrödinger model with a new integrable boundary
    C. Zambon
    Journal of High Energy Physics, 2014
  • [48] Darboux transformation for an integrable generalization of the nonlinear Schrödinger equation
    Xianguo Geng
    Yanyan Lv
    Nonlinear Dynamics, 2012, 69 : 1621 - 1630
  • [49] Semiclassical States of Nonlinear Schrödinger Equations
    A. Ambrosetti
    M. Badiale
    S. Cingolani
    Archive for Rational Mechanics and Analysis, 1997, 140 : 285 - 300
  • [50] Hamiltonian formalism for nonlinear Schr?dinger equations
    Pazarci, Ali
    Turhan, Umut Can
    Ghazanfari, Nader
    Gahramanov, Ilmar
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 121