Similarity Transformations and Nonlocal Reduced Integrable Nonlinear Schrödinger Type Equations

被引:9
|
作者
Cheng, Li [1 ,2 ]
Ma, Wen-Xiu [3 ,4 ,5 ,6 ]
机构
[1] Jinhua Polytech, Normal Sch, Jinhua 321007, Peoples R China
[2] Jinhua Polytech, Key Lab Crop Harvesting Equipment Technol, Jinhua 321007, Peoples R China
[3] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[4] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[5] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[6] North West Univ, Mat Sci Innovat & Modelling, Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
关键词
zero curvature equation; matrix eigenvalue problem; similarity transformation; integrable hierarchy; nonlinear Schrodinger equations; 05.45.Yv; 02.30.Ik; HIERARCHIES; DYNAMICS; SOLITONS; MODEL;
D O I
10.3390/math11194110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present three reduced integrable hierarchies of nonlocal integrable nonlinear Schrodinger-type equations, starting from a given vector integrable hierarchy generated from a matrix Lie algebra of B type. The basic tool is the zero curvature formulation. Three similarity transformations are taken to keep the invariance of the involved zero curvature equations. The key is to formulate a matrix solution to a reduced stationary zero curvature equation such that the zero curvature formulation works for a reduced case.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Type (-λ, -λ*) reduced nonlocal integrable mKdV equations and their soliton solutions
    Ma, Wen-Xiu
    APPLIED MATHEMATICS LETTERS, 2022, 131
  • [32] Hirota Bilinear Approach to Multi-Component Nonlocal Nonlinear Schrödinger Equations
    Bai, Yu-Shan
    Zheng, Li-Na
    Ma, Wen-Xiu
    Yun, Yin-Shan
    MATHEMATICS, 2024, 12 (16)
  • [33] Soliton solutions for the nonlocal nonlinear Schrödinger equation
    Xin Huang
    Liming Ling
    The European Physical Journal Plus, 131
  • [34] Singular solutions of the nonlocal nonlinear Schrödinger equation
    Bingwen Lin
    The European Physical Journal Plus, 137
  • [35] Chaoticons described by nonlocal nonlinear Schrödinger equation
    Lanhua Zhong
    Yuqi Li
    Yong Chen
    Weiyi Hong
    Wei Hu
    Qi Guo
    Scientific Reports, 7
  • [36] The large time asymptotic solutions of nonlinear Schrödinger type equations
    Liu, Baoping
    Soffer, Avy
    APPLIED NUMERICAL MATHEMATICS, 2024, 199 : 73 - 84
  • [37] On solutions of nonlinear Schrödinger equations with Cantor-type spectrum
    Anne Boutet de Monvel
    Ira Egorova
    Journal d’Analyse Mathematique, 1997, 72 (1): : 1 - 20
  • [38] Self-similar solutions of equations of the nonlinear Schrödinger type
    V. G. Marikhin
    A. B. Shabat
    M. Boiti
    F. Pempinelli
    Journal of Experimental and Theoretical Physics, 2000, 90 : 553 - 561
  • [39] Exact solutions to a class of nonlinear Schrödinger-type equations
    Jin-Liang Zhang
    Ming-Liang Wang
    Pramana, 2006, 67 : 1011 - 1022
  • [40] Bilinearization of Coupled Nonlinear Schrödinger Type Equations: Integrabilty and Solitons
    K. Porsezian
    Journal of Nonlinear Mathematical Physics, 1998, 5 : 126 - 131