Similarity Transformations and Nonlocal Reduced Integrable Nonlinear Schrödinger Type Equations

被引:9
|
作者
Cheng, Li [1 ,2 ]
Ma, Wen-Xiu [3 ,4 ,5 ,6 ]
机构
[1] Jinhua Polytech, Normal Sch, Jinhua 321007, Peoples R China
[2] Jinhua Polytech, Key Lab Crop Harvesting Equipment Technol, Jinhua 321007, Peoples R China
[3] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[4] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[5] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[6] North West Univ, Mat Sci Innovat & Modelling, Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
关键词
zero curvature equation; matrix eigenvalue problem; similarity transformation; integrable hierarchy; nonlinear Schrodinger equations; 05.45.Yv; 02.30.Ik; HIERARCHIES; DYNAMICS; SOLITONS; MODEL;
D O I
10.3390/math11194110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present three reduced integrable hierarchies of nonlocal integrable nonlinear Schrodinger-type equations, starting from a given vector integrable hierarchy generated from a matrix Lie algebra of B type. The basic tool is the zero curvature formulation. Three similarity transformations are taken to keep the invariance of the involved zero curvature equations. The key is to formulate a matrix solution to a reduced stationary zero curvature equation such that the zero curvature formulation works for a reduced case.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Riemann–Hilbert approach and soliton classification for a nonlocal integrable nonlinear Schrödinger equation of reverse-time type
    Jianping Wu
    Nonlinear Dynamics, 2022, 107 : 1127 - 1139
  • [22] Dynamics of high-order solitons in the nonlocal nonlinear Schrödinger equations
    Bo Yang
    Yong Chen
    Nonlinear Dynamics, 2018, 94 : 489 - 502
  • [23] Solitons and dynamics for the integrable nonlocal pair-transition-coupled nonlinear Schrödinger equation
    Lou, Yu
    Zhang, Yi
    Ye, Rusuo
    Li, Miao
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 409
  • [24] Novel solution structures localized in fractional integrable coupled nonlinear Schrödinger equations
    Zhang, Sheng
    Zhu, Feng
    Xu, Bo
    MODERN PHYSICS LETTERS B, 2024,
  • [25] Integrable Nonlocal Nonlinear Equations
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) : 7 - 59
  • [26] Comparative numerical study of integrable and nonintegrable discrete models of nonlinear Schrödinger equations
    Luo Q.
    Li Y.
    Guo H.
    Feng Q.
    Journal of Nonlinear Functional Analysis, 2023, 2023 (01):
  • [27] On Turbulence in Nonlinear Schrödinger Equations
    S.B. Kuksin
    Geometric and Functional Analysis, 1997, 7 : 783 - 822
  • [28] On the hyperbolic nonlinear Schrödinger equations
    Saut, Jean-Claude
    Wang, Yuexun
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2024, 2024 (01):
  • [29] Attractor for the nonlinear Schrödinger equation with a nonlocal nonlinear term
    Chaosheng Zhu
    Chunlai Mu
    Zhilin Pu
    Journal of Dynamical and Control Systems, 2010, 16 : 585 - 603
  • [30] Type (λ * , λ) reduced nonlocal integrable AKNS equations and their soliton solutions
    Ma, Wen-Xiu
    APPLIED NUMERICAL MATHEMATICS, 2024, 199 : 105 - 113