Similarity Transformations and Nonlocal Reduced Integrable Nonlinear Schrödinger Type Equations

被引:9
|
作者
Cheng, Li [1 ,2 ]
Ma, Wen-Xiu [3 ,4 ,5 ,6 ]
机构
[1] Jinhua Polytech, Normal Sch, Jinhua 321007, Peoples R China
[2] Jinhua Polytech, Key Lab Crop Harvesting Equipment Technol, Jinhua 321007, Peoples R China
[3] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[4] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[5] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[6] North West Univ, Mat Sci Innovat & Modelling, Mafikeng Campus,Private Bag X2046, ZA-2735 Mmabatho, South Africa
关键词
zero curvature equation; matrix eigenvalue problem; similarity transformation; integrable hierarchy; nonlinear Schrodinger equations; 05.45.Yv; 02.30.Ik; HIERARCHIES; DYNAMICS; SOLITONS; MODEL;
D O I
10.3390/math11194110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present three reduced integrable hierarchies of nonlocal integrable nonlinear Schrodinger-type equations, starting from a given vector integrable hierarchy generated from a matrix Lie algebra of B type. The basic tool is the zero curvature formulation. Three similarity transformations are taken to keep the invariance of the involved zero curvature equations. The key is to formulate a matrix solution to a reduced stationary zero curvature equation such that the zero curvature formulation works for a reduced case.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] INTEGRABLE NONLOCAL NONLINEAR SCHRÖDINGER HIERARCHIES OF TYPE (-?*,?) AND SOLITON SOLUTIONS
    Ma, Wen-xiu
    REPORTS ON MATHEMATICAL PHYSICS, 2023, 92 (01) : 19 - 36
  • [2] Solutions to Nonlocal Integrable Discrete Nonlinear Schr?dinger Equations via Reduction
    胡亚红
    陈俊超
    Chinese Physics Letters, 2018, 35 (11) : 5 - 9
  • [3] Lagrangian nonlocal nonlinear Schrödinger equations
    Velasco-Juan, M.
    Fujioka, J.
    Chaos, Solitons and Fractals, 2022, 156
  • [4] Nonlocal Nonlinear Schrödinger Equations as Models of Superfluidity
    N. G. Berloff
    Journal of Low Temperature Physics, 1999, 116 : 359 - 380
  • [5] On Asymptotic Nonlocal Symmetry of Nonlinear Schrödinger Equations
    W. W. Zachary
    V. M. Shtelen
    Journal of Nonlinear Mathematical Physics, 1998, 5 : 417 - 437
  • [6] Gauge transformations for a family of nonlinear schrödinger equations
    Goldin G.A.
    Journal of Nonlinear Mathematical Physics, 1997, 4 (1-2) : 6 - 11
  • [7] An Alternative Approach to Integrable Discrete Nonlinear Schrödinger Equations
    Francesco Demontis
    Cornelis van der Mee
    Acta Applicandae Mathematicae, 2013, 127 : 169 - 191
  • [8] Solutions and connections of nonlocal derivative nonlinear Schrödinger equations
    Ying Shi
    Shou-Feng Shen
    Song-Lin Zhao
    Nonlinear Dynamics, 2019, 95 : 1257 - 1267
  • [9] Nonlocal Nonlinear Schrödinger Equations in R3
    Zaihui Gan
    Jian Zhang
    Archive for Rational Mechanics and Analysis, 2013, 209 : 1 - 39
  • [10] On a class of nonlocal nonlinear Schrödinger equations and wave collapse
    M. Ablowitz
    I. Bakirtas
    B. Ilan
    The European Physical Journal Special Topics, 2007, 147 : 343 - 362