THE ε-MAXIMAL OPERATOR AND HAAR MULTIPLIERS ON VARIABLE LEBESGUE SPACES

被引:0
|
作者
Cruz-Uribe, David [1 ]
Penrod, Michael [1 ]
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
来源
关键词
Variable Lebesgue spaces; maximal operators; Haar mutlipliers; compact op-erators;
D O I
10.7153/mia-2023-26-41
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Stockdale, Villarroya, and Wick introduced the & epsilon;-maximal operator to prove the Haar multiplier is bounded on the weighted spaces Lp(w) for a class of weights larger than Ap . We prove the & epsilon;-maximal operator and Haar multiplier are bounded on variable Lebesgue spaces Lp(& BULL;)(I8n) for a larger collection of exponent functions than the log-Ho & BULL;lder continuous functions used to prove the boundedness of the maximal operator on Lp(& BULL;)(I8n). We also prove that the Haar multiplier is compact when restricted to a dyadic cube Q0 .
引用
收藏
页码:685 / 701
页数:17
相关论文
共 50 条
  • [1] The Kakeya maximal operator on the variable Lebesgue spaces
    Saito, Hiroki
    Tanaka, Hitoshi
    ARCHIV DER MATHEMATIK, 2014, 103 (06) : 481 - 491
  • [2] The maximal operator on weighted variable Lebesgue spaces
    David Cruz-Uribe
    Lars Diening
    Peter Hästö
    Fractional Calculus and Applied Analysis, 2011, 14 : 361 - 374
  • [3] The Kakeya maximal operator on the variable Lebesgue spaces
    Hiroki Saito
    Hitoshi Tanaka
    Archiv der Mathematik, 2014, 103 : 481 - 491
  • [4] THE MAXIMAL OPERATOR ON WEIGHTED VARIABLE LEBESGUE SPACES
    Cruz-Uribe, David
    Diening, Lars
    Hasto, Peter
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (03) : 361 - 374
  • [5] Maximal operator on variable Lebesgue spaces with radial exponent
    Nekvinda, Ales
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 477 (02) : 961 - 986
  • [6] Modular inequalities for the maximal operator in variable Lebesgue spaces
    Cruz-Uribe, David
    Di Fratta, Giovanni
    Fiorenza, Alberto
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 : 299 - 311
  • [7] Weighted norm inequalities for the maximal operator on variable Lebesgue spaces
    Cruz-Uribe, D.
    Fiorenza, A.
    Neugebauer, C. J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) : 744 - 760
  • [8] The maximal operator in Lebesgue spaces with variable exponent near 1
    Hasto, Peter A.
    MATHEMATISCHE NACHRICHTEN, 2007, 280 (1-2) : 74 - 82
  • [9] MAXIMAL OPERATOR IN VARIABLE EXPONENT LEBESGUE SPACES ON UNBOUNDED QUASIMETRIC MEASURE SPACES
    Adamowicz, Tomasz
    Harjulehto, Petteri
    Hasto, Peter
    MATHEMATICA SCANDINAVICA, 2015, 116 (01) : 5 - 22
  • [10] LOCAL HARDY-LITTLEWOOD MAXIMAL OPERATOR IN VARIABLE LEBESGUE SPACES
    Gogatishvili, A.
    Danelia, A.
    Kopaliani, T.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2014, 8 (02) : 229 - 244