Variable Lebesgue spaces;
maximal operators;
Haar mutlipliers;
compact op-erators;
D O I:
10.7153/mia-2023-26-41
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Recently, Stockdale, Villarroya, and Wick introduced the & epsilon;-maximal operator to prove the Haar multiplier is bounded on the weighted spaces Lp(w) for a class of weights larger than Ap . We prove the & epsilon;-maximal operator and Haar multiplier are bounded on variable Lebesgue spaces Lp(& BULL;)(I8n) for a larger collection of exponent functions than the log-Ho & BULL;lder continuous functions used to prove the boundedness of the maximal operator on Lp(& BULL;)(I8n). We also prove that the Haar multiplier is compact when restricted to a dyadic cube Q0 .
机构:
Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USAUniv Alabama, Dept Math, Tuscaloosa, AL 35487 USA
Cruz-Uribe, David
Di Fratta, Giovanni
论文数: 0引用数: 0
h-index: 0
机构:
TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, AustriaUniv Alabama, Dept Math, Tuscaloosa, AL 35487 USA
Di Fratta, Giovanni
Fiorenza, Alberto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Napoli, Dipartimento Architettura, Via Monteoliveto 3, I-80134 Naples, Italy
CNR, Sez Napoli, Ist Applicazioni Calcolo Mauro Picone, Via Pietro Castellino 111, I-80131 Naples, ItalyUniv Alabama, Dept Math, Tuscaloosa, AL 35487 USA