THE ε-MAXIMAL OPERATOR AND HAAR MULTIPLIERS ON VARIABLE LEBESGUE SPACES

被引:0
|
作者
Cruz-Uribe, David [1 ]
Penrod, Michael [1 ]
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
来源
关键词
Variable Lebesgue spaces; maximal operators; Haar mutlipliers; compact op-erators;
D O I
10.7153/mia-2023-26-41
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Stockdale, Villarroya, and Wick introduced the & epsilon;-maximal operator to prove the Haar multiplier is bounded on the weighted spaces Lp(w) for a class of weights larger than Ap . We prove the & epsilon;-maximal operator and Haar multiplier are bounded on variable Lebesgue spaces Lp(& BULL;)(I8n) for a larger collection of exponent functions than the log-Ho & BULL;lder continuous functions used to prove the boundedness of the maximal operator on Lp(& BULL;)(I8n). We also prove that the Haar multiplier is compact when restricted to a dyadic cube Q0 .
引用
收藏
页码:685 / 701
页数:17
相关论文
共 50 条