THE ε-MAXIMAL OPERATOR AND HAAR MULTIPLIERS ON VARIABLE LEBESGUE SPACES

被引:0
|
作者
Cruz-Uribe, David [1 ]
Penrod, Michael [1 ]
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
来源
关键词
Variable Lebesgue spaces; maximal operators; Haar mutlipliers; compact op-erators;
D O I
10.7153/mia-2023-26-41
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Stockdale, Villarroya, and Wick introduced the & epsilon;-maximal operator to prove the Haar multiplier is bounded on the weighted spaces Lp(w) for a class of weights larger than Ap . We prove the & epsilon;-maximal operator and Haar multiplier are bounded on variable Lebesgue spaces Lp(& BULL;)(I8n) for a larger collection of exponent functions than the log-Ho & BULL;lder continuous functions used to prove the boundedness of the maximal operator on Lp(& BULL;)(I8n). We also prove that the Haar multiplier is compact when restricted to a dyadic cube Q0 .
引用
收藏
页码:685 / 701
页数:17
相关论文
共 50 条
  • [31] Boundedness of dyadic maximal operators on variable Lebesgue spaces
    Ferenc Weisz
    Advances in Operator Theory, 2020, 5 : 1588 - 1598
  • [32] Stein's Maximal Function on Variable Lebesgue Spaces
    Zhang Jianlin
    Gao Ran
    PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION (ICMS2011), VOL 2, 2011, : 99 - 103
  • [33] Maximal Operator in Variable Stummel Spaces
    Alexandre Almeida
    Humberto Rafeiro
    Journal of Fourier Analysis and Applications, 2022, 28
  • [34] Maximal Operator in Variable Stummel Spaces
    Almeida, Alexandre
    Rafeiro, Humberto
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2022, 28 (03)
  • [35] Iterated maximal functions in variable exponent Lebesgue spaces
    Petteri Harjulehto
    Peter Hästö
    Yoshihiro Mizuta
    Tetsu Shimomura
    Manuscripta Mathematica, 2011, 135 : 381 - 399
  • [36] COMMUTATORS FOR THE MAXIMAL FUNCTIONS ON LEBESGUE SPACES WITH VARIABLE EXPONENT
    Zhang, Pu
    Wu, Jianglong
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (04): : 1375 - 1386
  • [37] Boundedness of dyadic maximal operators on variable Lebesgue spaces
    Weisz, Ferenc
    ADVANCES IN OPERATOR THEORY, 2020, 5 (04) : 1588 - 1598
  • [38] Approximation by Haar and Walsh Polynomials in Weighted Variable Exponent Lebesgue Spaces
    Volosivets, S. S.
    RESULTS IN MATHEMATICS, 2022, 77 (04)
  • [39] Note on local properties of the exponents and boundedness of Hardy-Littlewood maximal operator in variable Lebesgue spaces
    Kopaliani, Tengiz
    Zviadadze, Shalva
    HOKKAIDO MATHEMATICAL JOURNAL, 2020, 49 (02) : 215 - 226
  • [40] Basis Property of the Haar System in Weighted Lebesgue Spaces with Variable Exponent
    Magomed-Kasumov, M. G.
    MATHEMATICAL NOTES, 2024, 115 (5-6) : 755 - 763