MAXIMAL OPERATOR IN VARIABLE EXPONENT LEBESGUE SPACES ON UNBOUNDED QUASIMETRIC MEASURE SPACES

被引:2
|
作者
Adamowicz, Tomasz [1 ]
Harjulehto, Petteri [2 ]
Hasto, Peter [3 ]
机构
[1] Polish Acad Sci, Inst Math, PL-00656 Warsaw, Poland
[2] Univ Turku, Dept Math & Stat, FI-20014 Turku, Finland
[3] Univ Oulu, Dept Math Sci, FI-90014 Oulu, Finland
关键词
POTENTIALS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Hardy-Littlewood maximal operator M on L-p(.)(X) when X is an unbounded (quasi)metric measure space, and p may be unbounded. We consider both the doubling and general measure case, and use two versions of the log-Holder condition. As a special case we obtain the criterion for a boundedness of M on L-p(.)(R-n, mu) for arbitrary, possibly non-doubling, Radon measures.
引用
收藏
页码:5 / 22
页数:18
相关论文
共 50 条
  • [1] Maximal operator on variable Lebesgue spaces with radial exponent
    Nekvinda, Ales
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 477 (02) : 961 - 986
  • [2] The maximal operator in Lebesgue spaces with variable exponent near 1
    Hasto, Peter A.
    MATHEMATISCHE NACHRICHTEN, 2007, 280 (1-2) : 74 - 82
  • [3] Maximal operator on variable Lebesgue spaces for almost monotone radial exponent
    Nekvinda, Ales
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (02) : 1345 - 1365
  • [4] BOUNDEDNESS OF THE FRACTIONAL MAXIMAL OPERATOR ON VARIABLE EXPONENT LEBESGUE SPACES: A SHORT PROOF
    Gorosito, Osvaldo
    Pradolini, Gladis
    Salinas, Oscar
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2012, 53 (01): : 25 - 27
  • [5] The Kakeya maximal operator on the variable Lebesgue spaces
    Saito, Hiroki
    Tanaka, Hitoshi
    ARCHIV DER MATHEMATIK, 2014, 103 (06) : 481 - 491
  • [6] The maximal operator on weighted variable Lebesgue spaces
    David Cruz-Uribe
    Lars Diening
    Peter Hästö
    Fractional Calculus and Applied Analysis, 2011, 14 : 361 - 374
  • [7] The Kakeya maximal operator on the variable Lebesgue spaces
    Hiroki Saito
    Hitoshi Tanaka
    Archiv der Mathematik, 2014, 103 : 481 - 491
  • [8] THE MAXIMAL OPERATOR ON WEIGHTED VARIABLE LEBESGUE SPACES
    Cruz-Uribe, David
    Diening, Lars
    Hasto, Peter
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (03) : 361 - 374
  • [9] Iterated maximal functions in variable exponent Lebesgue spaces
    Harjulehto, Petteri
    Hasto, Peter
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    MANUSCRIPTA MATHEMATICA, 2011, 135 (3-4) : 381 - 399
  • [10] Iterated maximal functions in variable exponent Lebesgue spaces
    Petteri Harjulehto
    Peter Hästö
    Yoshihiro Mizuta
    Tetsu Shimomura
    Manuscripta Mathematica, 2011, 135 : 381 - 399