MAXIMAL OPERATOR IN VARIABLE EXPONENT LEBESGUE SPACES ON UNBOUNDED QUASIMETRIC MEASURE SPACES

被引:2
|
作者
Adamowicz, Tomasz [1 ]
Harjulehto, Petteri [2 ]
Hasto, Peter [3 ]
机构
[1] Polish Acad Sci, Inst Math, PL-00656 Warsaw, Poland
[2] Univ Turku, Dept Math & Stat, FI-20014 Turku, Finland
[3] Univ Oulu, Dept Math Sci, FI-90014 Oulu, Finland
关键词
POTENTIALS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Hardy-Littlewood maximal operator M on L-p(.)(X) when X is an unbounded (quasi)metric measure space, and p may be unbounded. We consider both the doubling and general measure case, and use two versions of the log-Holder condition. As a special case we obtain the criterion for a boundedness of M on L-p(.)(R-n, mu) for arbitrary, possibly non-doubling, Radon measures.
引用
收藏
页码:5 / 22
页数:18
相关论文
共 50 条