Accurate computational design of three-dimensional protein crystals

被引:14
|
作者
Li, Zhe [1 ,2 ]
Wang, Shunzhi [1 ,2 ]
Nattermann, Una [1 ,2 ,3 ]
Bera, Asim K. [1 ,2 ]
Borst, Andrew J. [1 ,2 ]
Yaman, Muammer Y. [4 ]
Bick, Matthew J. [1 ,2 ]
Yang, Erin C. [1 ,2 ,3 ]
Sheffler, William [1 ,2 ]
Lee, Byeongdu [5 ]
Seifert, Soenke [5 ]
Hura, Greg L. [6 ]
Nguyen, Hannah [1 ,2 ]
Kang, Alex [1 ,2 ]
Dalal, Radhika [1 ,2 ]
Lubner, Joshua M. [1 ,2 ]
Hsia, Yang [1 ,2 ]
Haddox, Hugh [1 ,2 ]
Courbet, Alexis [1 ,2 ,7 ]
Dowling, Quinton [1 ,2 ]
Miranda, Marcos [1 ,2 ]
Favor, Andrew [2 ,8 ]
Etemadi, Ali [2 ,9 ]
Edman, Natasha I. [1 ,2 ,10 ,11 ]
Yang, Wei [1 ,2 ]
Weidle, Connor [1 ,2 ]
Sankaran, Banumathi [6 ]
Negahdari, Babak [9 ]
Ross, Michael B. [12 ]
Ginger, David S. [4 ]
Baker, David [1 ,2 ,7 ]
机构
[1] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[2] Univ Washington, Inst Prot Design, Seattle, WA 98195 USA
[3] Univ Washington, Grad Program Biol Phys Struct & Design, Seattle, WA USA
[4] Univ Washington, Dept Chem, Seattle, WA USA
[5] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL USA
[6] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA USA
[7] Univ Washington, HHMI, Seattle, WA 98195 USA
[8] Univ Washington, Mol Engn & Sci Inst, Seattle, WA USA
[9] Univ Tehran Med Sci, Sch Adv Technol Med, Med Biotechnol Dept, Tehran, Iran
[10] Univ Washington, Mol Cellular Biol Grad Program, Seattle, WA USA
[11] Univ Washington, Med Scientist Training Program, Seattle, WA USA
[12] Univ Massachusetts, Dept Chem, Lowell, MA USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
DE-NOVO DESIGN; MODEL; NANOMATERIALS; SYSTEM; IMAGES; SAXS; AGE;
D O I
10.1038/s41563-023-01683-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Protein crystallization plays a central role in structural biology. Despite this, the process of crystallization remains poorly understood and highly empirical, with crystal contacts, lattice packing arrangements and space group preferences being largely unpredictable. Programming protein crystallization through precisely engineered side-chain-side-chain interactions across protein-protein interfaces is an outstanding challenge. Here we develop a general computational approach for designing three-dimensional protein crystals with prespecified lattice architectures at atomic accuracy that hierarchically constrains the overall number of degrees of freedom of the system. We design three pairs of oligomers that can be individually purified, and upon mixing, spontaneously self-assemble into >100 mu m three-dimensional crystals. The structures of these crystals are nearly identical to the computational design models, closely corresponding in both overall architecture and the specific protein-protein interactions. The dimensions of the crystal unit cell can be systematically redesigned while retaining the space group symmetry and overall architecture, and the crystals are extremely porous and highly stable. Our approach enables the computational design of protein crystals with high accuracy, and the designed protein crystals, which have both structural and assembly information encoded in their primary sequences, provide a powerful platform for biological materials engineering.
引用
收藏
页码:1556 / +
页数:24
相关论文
共 50 条
  • [31] Three-dimensional function photonic crystals
    Zhang, Hai-Feng
    PHYSICA B-CONDENSED MATTER, 2017, 525 : 104 - 113
  • [32] Three-dimensional GaN photonic crystals
    Gajiev, G
    Golubev, VG
    Kurdyukov, DA
    Pevtsov, AB
    Selkin, AV
    Travnikov, VV
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2002, 231 (01): : R7 - R9
  • [33] Three-dimensional lithography of photonic crystals
    Blanco, A
    Busch, K
    Deubel, M
    Enkrich, C
    von Freymann, G
    Hermatschweiler, M
    Koch, W
    Linden, S
    Meisel, DC
    Ozin, GA
    Pereira, S
    Soukoulis, CM
    Tétreault, N
    Wegener, M
    ADVANCES IN SOLID STATE PHYSICS 44, 2004, 44 : 93 - 103
  • [34] Modelling three-dimensional protein structures for applications in drug design
    Schmidt, Tobias
    Bergner, Andreas
    Schwede, Torsten
    DRUG DISCOVERY TODAY, 2014, 19 (07) : 890 - 897
  • [35] Resonant three-dimensional photonic crystals
    E. L. Ivchenko
    A. N. Poddubnyĭ
    Physics of the Solid State, 2006, 48 : 581 - 588
  • [36] Accurate three-dimensional documentation of distinct sites
    Singh, Mahesh K.
    Dutta, Ashish
    Subramanian, Venkatesh K.
    JOURNAL OF ELECTRONIC IMAGING, 2017, 26 (01)
  • [37] Design of a Three-Dimensional Hand/Forearm Model to Apply Computational Fluid Dynamics
    Marinho, Daniel Almeida
    Reis, Victor Machado
    Vilas-Boas, Joao Paulo
    Alves, Francisco Bessone
    Machado, Leandro
    Rouboa, Abel Ilah
    Silva, Antonio Jose
    BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY, 2010, 53 (02) : 437 - 442
  • [38] Accurate three-dimensional reconstruction of intravascular ultrasound data - Spatially correct three-dimensional reconstructions
    Evans, JL
    Ng, KH
    Wiet, SG
    Vonesh, MJ
    Burns, WB
    Radvany, MG
    Kane, BJ
    Davidson, CJ
    Roth, SI
    Kramer, BL
    Meyers, SN
    McPherson, DD
    CIRCULATION, 1996, 93 (03) : 567 - 576
  • [39] Three-dimensional imaging of protein crystals with the use of optical low coherence reflectometry
    Lawson, CM
    Forrestall, DA
    Zhai, T
    Shen, M
    DeLucas, LJ
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1996, 13 (02) : 63 - 66
  • [40] Design and Fabrication Challenges for Millimeter-Scale Three-Dimensional Phononic Crystals
    Lucklum, Frieder
    Vellekoop, Michael J.
    CRYSTALS, 2017, 7 (11):