Accurate computational design of three-dimensional protein crystals

被引:14
|
作者
Li, Zhe [1 ,2 ]
Wang, Shunzhi [1 ,2 ]
Nattermann, Una [1 ,2 ,3 ]
Bera, Asim K. [1 ,2 ]
Borst, Andrew J. [1 ,2 ]
Yaman, Muammer Y. [4 ]
Bick, Matthew J. [1 ,2 ]
Yang, Erin C. [1 ,2 ,3 ]
Sheffler, William [1 ,2 ]
Lee, Byeongdu [5 ]
Seifert, Soenke [5 ]
Hura, Greg L. [6 ]
Nguyen, Hannah [1 ,2 ]
Kang, Alex [1 ,2 ]
Dalal, Radhika [1 ,2 ]
Lubner, Joshua M. [1 ,2 ]
Hsia, Yang [1 ,2 ]
Haddox, Hugh [1 ,2 ]
Courbet, Alexis [1 ,2 ,7 ]
Dowling, Quinton [1 ,2 ]
Miranda, Marcos [1 ,2 ]
Favor, Andrew [2 ,8 ]
Etemadi, Ali [2 ,9 ]
Edman, Natasha I. [1 ,2 ,10 ,11 ]
Yang, Wei [1 ,2 ]
Weidle, Connor [1 ,2 ]
Sankaran, Banumathi [6 ]
Negahdari, Babak [9 ]
Ross, Michael B. [12 ]
Ginger, David S. [4 ]
Baker, David [1 ,2 ,7 ]
机构
[1] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[2] Univ Washington, Inst Prot Design, Seattle, WA 98195 USA
[3] Univ Washington, Grad Program Biol Phys Struct & Design, Seattle, WA USA
[4] Univ Washington, Dept Chem, Seattle, WA USA
[5] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL USA
[6] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA USA
[7] Univ Washington, HHMI, Seattle, WA 98195 USA
[8] Univ Washington, Mol Engn & Sci Inst, Seattle, WA USA
[9] Univ Tehran Med Sci, Sch Adv Technol Med, Med Biotechnol Dept, Tehran, Iran
[10] Univ Washington, Mol Cellular Biol Grad Program, Seattle, WA USA
[11] Univ Washington, Med Scientist Training Program, Seattle, WA USA
[12] Univ Massachusetts, Dept Chem, Lowell, MA USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
DE-NOVO DESIGN; MODEL; NANOMATERIALS; SYSTEM; IMAGES; SAXS; AGE;
D O I
10.1038/s41563-023-01683-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Protein crystallization plays a central role in structural biology. Despite this, the process of crystallization remains poorly understood and highly empirical, with crystal contacts, lattice packing arrangements and space group preferences being largely unpredictable. Programming protein crystallization through precisely engineered side-chain-side-chain interactions across protein-protein interfaces is an outstanding challenge. Here we develop a general computational approach for designing three-dimensional protein crystals with prespecified lattice architectures at atomic accuracy that hierarchically constrains the overall number of degrees of freedom of the system. We design three pairs of oligomers that can be individually purified, and upon mixing, spontaneously self-assemble into >100 mu m three-dimensional crystals. The structures of these crystals are nearly identical to the computational design models, closely corresponding in both overall architecture and the specific protein-protein interactions. The dimensions of the crystal unit cell can be systematically redesigned while retaining the space group symmetry and overall architecture, and the crystals are extremely porous and highly stable. Our approach enables the computational design of protein crystals with high accuracy, and the designed protein crystals, which have both structural and assembly information encoded in their primary sequences, provide a powerful platform for biological materials engineering.
引用
收藏
页码:1556 / +
页数:24
相关论文
共 50 条
  • [41] Exploring the Potential of Three-Dimensional DNA Crystals in Nanotechnology: Design, Optimization, and Applications
    Kong, Huating
    Sun, Bo
    Yu, Feng
    Wang, Qisheng
    Xia, Kai
    Jiang, Dawei
    ADVANCED SCIENCE, 2023, 10 (24)
  • [42] Design of three-dimensional photonic crystals for large-area membrane stacking
    Lu, Ling
    Cheong, Lin Lee
    Smith, Henry I.
    Johnson, Steven G.
    Joannopoulos, John
    Soljacic, Marin
    2012 IEEE PHOTONICS CONFERENCE (IPC), 2012, : 483 - 484
  • [43] Three-dimensional Imaging of Bacterial Cells for Accurate Cellular Representations and Precise Protein Localization
    Bratton, Benjamin P.
    Barton, Brody
    Morgenstein, Randy M.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2019, (152):
  • [44] A three-dimensional computational model for intergranular cracking
    Jivkov, A. P.
    Stevens, N. P. C.
    Marrow, T. J.
    COMPUTATIONAL MATERIALS SCIENCE, 2006, 38 (02) : 442 - 453
  • [45] Three-dimensional polarimetric computational integral imaging
    Xiao, Xiao
    Javidi, Bahram
    Saavedra, Genaro
    Eismann, Michael
    Martinez-Corral, Manuel
    OPTICS EXPRESS, 2012, 20 (14): : 15481 - 15488
  • [46] Computational model of three-dimensional cardiac electromechanics
    Usyk, Taras P.
    LeGrice, Ian J.
    McCulloch, Andrew D.
    Computing and Visualization in Science, 2002, 4 (04) : 249 - 257
  • [47] THREE-DIMENSIONAL COMPUTATIONAL STRUCTURES AND THE REAL WORLD
    Lonsing, Werner
    Anders, Peter
    PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED ARCHITECTURAL DESIGN RESEARCH IN ASIA (CAADRIA 2011): CIRCUIT BENDING, BREAKING AND MENDING, 2011, : 209 - 218
  • [48] Computational synthesis of three-dimensional discrete structures
    Zhao, XZ
    Shea, K
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL SYMPOSIUM ON STRUCTURAL ENGINEERING FOR YOUNG EXPERTS, VOLS 1 AND 2, 2004, : 42 - 49
  • [49] On the computational homogenization of three-dimensional fibrous materials
    Karakoc, Alp
    Paltakari, Jouni
    Taciroglu, Ertugrul
    COMPOSITE STRUCTURES, 2020, 242 (242)
  • [50] Three-dimensional computational wavefronts for matrix product
    Paul, JM
    Mickle, MH
    COMPUTERS & ELECTRICAL ENGINEERING, 1996, 22 (01) : 1 - 12