Random forest microplastic classification using spectral subsamples of FT-IR hyperspectral images

被引:6
|
作者
Valls-Conesa, Jordi [1 ,2 ]
Winterauer, Dominik J. J. [1 ]
Kroeger-Lui, Niels [1 ]
Roth, Sascha [1 ]
Liu, Fan [2 ]
Luettjohann, Stephan [1 ]
Harig, Roland [1 ]
Vollertsen, Jes [2 ]
机构
[1] Bruker Opt GmbH & Co KG, Rudolf Plank Str 27, D-76275 Ettlingen, Germany
[2] Aalborg Univ, Dept Built Environm, Thomas Manns Vej 23, DK-9220 Aalborg, Denmark
关键词
IDENTIFICATION; HISTOPATHOLOGY; SYSTEM; CELLS;
D O I
10.1039/d3ay00514c
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this work, a random decision forest model is built for fast identification of Fourier-transform infrared spectra of the eleven most common types of microplastics in the environment. The random decision forest input data is reduced to a combination of highly discriminative single wavenumbers selected using a machine learning classifier. This dimension reduction allows input from systems with individual wavenumber measurements, and decreases prediction time. The training and testing spectra are extracted from Fourier-transform infrared hyperspectral images of pure-type microplastic samples, automatizing the process with reference spectra and a fast background correction and identification algorithm. Random decision forest classification results are validated using procedurally generated ground truth. The classification accuracy achieved on said ground truths are not expected to carry over to environmental samples as those usually contain a broader variety of materials.
引用
收藏
页码:2226 / 2233
页数:8
相关论文
共 50 条
  • [1] Classification of bacteria using FT-IR
    INRA-URTAL-Poligny, France
    不详
    不详
    不详
    [J]. Spectroscopy, 2007, 9 SUPPL. (20-22)
  • [2] Similarity maps and hierarchical clustering for annotating FT-IR spectral images
    Qiaoyong Zhong
    Chen Yang
    Frederik Großerüschkamp
    Angela Kallenbach-Thieltges
    Peter Serocka
    Klaus Gerwert
    Axel Mosig
    [J]. BMC Bioinformatics, 14
  • [3] Similarity maps and hierarchical clustering for annotating FT-IR spectral images
    Zhong, Qiaoyong
    Yang, Chen
    Grosserueschkamp, Frederik
    Kallenbach-Thieltges, Angela
    Serocka, Peter
    Gerwert, Klaus
    Mosig, Axel
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [4] Classification of vegetable oils by FT-IR
    Dahlberg, DB
    Lee, SM
    Wenger, SJ
    Vargo, JA
    [J]. APPLIED SPECTROSCOPY, 1997, 51 (08) : 1118 - 1124
  • [5] Classification of feeding fats by FT-IR spectroscopy
    Gasperini, Gianmaria
    Fusari, Elena
    Della Bella, Laura
    Bondioli, Paolo
    [J]. EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, 2007, 109 (07) : 673 - 681
  • [6] Influence of denoising on classification results in the context of hyperspectral data: High Definition FT-IR imaging
    Raczkowska, Magda K.
    Koziol, Paulina
    Urbaniak-Wasik, Slawka
    Paluszkiewicz, Czeslawa
    Kwiatek, Wojciech M.
    Wrobel, Tomasz P.
    [J]. ANALYTICA CHIMICA ACTA, 2019, 1085 (39-47) : 39 - 47
  • [7] Fine Crop Classification Based on UAV Hyperspectral Images and Random Forest
    Wang, Zhihua
    Zhao, Zhan
    Yin, Chenglong
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (04)
  • [8] NOISE IN FT-IR SPECTRAL DATA-PROCESSING
    GIL, M
    IZA, N
    MORCILLO, J
    [J]. JOURNAL OF MOLECULAR STRUCTURE, 1988, 175 : 329 - 334
  • [9] Spatial-Spectral Random Patches Network for Classification of Hyperspectral Images
    Beirami, Behnam Asghari
    Mokhtarzade, Mehdi
    [J]. TRAITEMENT DU SIGNAL, 2019, 36 (05) : 399 - 406
  • [10] Iterative Random Training Sampling Spectral Spatial Classification for Hyperspectral Images
    Chang, Chein-, I
    Ma, Kenneth Yeonkong
    Liang, Chia-Chen
    Kuo, Yi-Mei
    Chen, Shuhan
    Zhong, Shengwei
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 3986 - 4007