Random forest microplastic classification using spectral subsamples of FT-IR hyperspectral images
被引:6
|
作者:
论文数: 引用数:
h-index:
机构:
Valls-Conesa, Jordi
[1
,2
]
Winterauer, Dominik J. J.
论文数: 0引用数: 0
h-index: 0
机构:
Bruker Opt GmbH & Co KG, Rudolf Plank Str 27, D-76275 Ettlingen, GermanyBruker Opt GmbH & Co KG, Rudolf Plank Str 27, D-76275 Ettlingen, Germany
Winterauer, Dominik J. J.
[1
]
Kroeger-Lui, Niels
论文数: 0引用数: 0
h-index: 0
机构:
Bruker Opt GmbH & Co KG, Rudolf Plank Str 27, D-76275 Ettlingen, GermanyBruker Opt GmbH & Co KG, Rudolf Plank Str 27, D-76275 Ettlingen, Germany
Kroeger-Lui, Niels
[1
]
Roth, Sascha
论文数: 0引用数: 0
h-index: 0
机构:
Bruker Opt GmbH & Co KG, Rudolf Plank Str 27, D-76275 Ettlingen, GermanyBruker Opt GmbH & Co KG, Rudolf Plank Str 27, D-76275 Ettlingen, Germany
Roth, Sascha
[1
]
Liu, Fan
论文数: 0引用数: 0
h-index: 0
机构:
Aalborg Univ, Dept Built Environm, Thomas Manns Vej 23, DK-9220 Aalborg, DenmarkBruker Opt GmbH & Co KG, Rudolf Plank Str 27, D-76275 Ettlingen, Germany
Liu, Fan
[2
]
Luettjohann, Stephan
论文数: 0引用数: 0
h-index: 0
机构:
Bruker Opt GmbH & Co KG, Rudolf Plank Str 27, D-76275 Ettlingen, GermanyBruker Opt GmbH & Co KG, Rudolf Plank Str 27, D-76275 Ettlingen, Germany
Luettjohann, Stephan
[1
]
Harig, Roland
论文数: 0引用数: 0
h-index: 0
机构:
Bruker Opt GmbH & Co KG, Rudolf Plank Str 27, D-76275 Ettlingen, GermanyBruker Opt GmbH & Co KG, Rudolf Plank Str 27, D-76275 Ettlingen, Germany
Harig, Roland
[1
]
Vollertsen, Jes
论文数: 0引用数: 0
h-index: 0
机构:
Aalborg Univ, Dept Built Environm, Thomas Manns Vej 23, DK-9220 Aalborg, DenmarkBruker Opt GmbH & Co KG, Rudolf Plank Str 27, D-76275 Ettlingen, Germany
Vollertsen, Jes
[2
]
机构:
[1] Bruker Opt GmbH & Co KG, Rudolf Plank Str 27, D-76275 Ettlingen, Germany
[2] Aalborg Univ, Dept Built Environm, Thomas Manns Vej 23, DK-9220 Aalborg, Denmark
In this work, a random decision forest model is built for fast identification of Fourier-transform infrared spectra of the eleven most common types of microplastics in the environment. The random decision forest input data is reduced to a combination of highly discriminative single wavenumbers selected using a machine learning classifier. This dimension reduction allows input from systems with individual wavenumber measurements, and decreases prediction time. The training and testing spectra are extracted from Fourier-transform infrared hyperspectral images of pure-type microplastic samples, automatizing the process with reference spectra and a fast background correction and identification algorithm. Random decision forest classification results are validated using procedurally generated ground truth. The classification accuracy achieved on said ground truths are not expected to carry over to environmental samples as those usually contain a broader variety of materials.