Random forest microplastic classification using spectral subsamples of FT-IR hyperspectral images

被引:6
|
作者
Valls-Conesa, Jordi [1 ,2 ]
Winterauer, Dominik J. J. [1 ]
Kroeger-Lui, Niels [1 ]
Roth, Sascha [1 ]
Liu, Fan [2 ]
Luettjohann, Stephan [1 ]
Harig, Roland [1 ]
Vollertsen, Jes [2 ]
机构
[1] Bruker Opt GmbH & Co KG, Rudolf Plank Str 27, D-76275 Ettlingen, Germany
[2] Aalborg Univ, Dept Built Environm, Thomas Manns Vej 23, DK-9220 Aalborg, Denmark
关键词
IDENTIFICATION; HISTOPATHOLOGY; SYSTEM; CELLS;
D O I
10.1039/d3ay00514c
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this work, a random decision forest model is built for fast identification of Fourier-transform infrared spectra of the eleven most common types of microplastics in the environment. The random decision forest input data is reduced to a combination of highly discriminative single wavenumbers selected using a machine learning classifier. This dimension reduction allows input from systems with individual wavenumber measurements, and decreases prediction time. The training and testing spectra are extracted from Fourier-transform infrared hyperspectral images of pure-type microplastic samples, automatizing the process with reference spectra and a fast background correction and identification algorithm. Random decision forest classification results are validated using procedurally generated ground truth. The classification accuracy achieved on said ground truths are not expected to carry over to environmental samples as those usually contain a broader variety of materials.
引用
收藏
页码:2226 / 2233
页数:8
相关论文
共 50 条
  • [21] Validation of an FT-IR microscopy method for the determination of microplastic particles in surface waters
    Huppertsberg, S.
    Knepper, T. P.
    [J]. METHODSX, 2020, 7
  • [22] Spatial sampling effect on data structure and random forest classification of tissue types in High Definition and Standard Definition FT-IR imaging
    Liberda, Danuta
    Kosowska, Karolina
    Koziol, Paulina
    Wrobel, Tomasz P.
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2021, 217
  • [23] Influence of interference effects on the spectral quality and histological classification by FT-IR imaging in transflection geometry
    Liberda, Danuta
    Koziol, Paulina
    Raczkowska, Magda K.
    Kwiatek, Wojciech M.
    Wrobel, Tomasz P.
    [J]. ANALYST, 2021, 146 (02) : 646 - 654
  • [24] Authentication of cinnamon spice samples using FT-IR spectroscopy and chemometric classification
    Lixourgioti, Panagiota
    Goggin, Kirstie A.
    Zhao, Xinyu
    Murphy, Denis J.
    van Ruth, Saskia
    Koidis, Anastasios
    [J]. LWT-FOOD SCIENCE AND TECHNOLOGY, 2022, 154
  • [25] Illumination correction for close-range hyperspectral images using spectral invariants and random forest regression
    Ihalainen, Olli
    Sandmann, Theresa
    Rascher, Uwe
    Mõttus, Matti
    [J]. Remote Sensing of Environment, 2024, 315
  • [26] Classification of Hyperspectral Imagery based on spectral gradient, SVM and spatial random forest
    Zhao Chunhui
    Gao Bing
    Zhang Lejun
    Wan Xiaoqing
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2018, 95 : 61 - 69
  • [27] Spectral and Spatial Classification of Hyperspectral Images Based on Random Multi-Graphs
    Gao, Feng
    Wang, Qun
    Dong, Junyu
    Xu, Qizhi
    [J]. REMOTE SENSING, 2018, 10 (08)
  • [28] FACTORS AFFECTING THE SPECTRAL RESPONSE IN A TG/FT-IR EXPERIMENT
    MARINI, A
    BERBENNI, V
    CAPSONI, D
    RICCARDI, R
    ZERLIA, T
    [J]. APPLIED SPECTROSCOPY, 1994, 48 (12) : 1468 - 1471
  • [29] FT-IR/ATR Spectral Analysis of Black Sesame Constituents
    Kitade, Kaoru
    Katayama, Norihisa
    Kuwae, Akio
    [J]. JOURNAL OF THE JAPANESE SOCIETY FOR FOOD SCIENCE AND TECHNOLOGY-NIPPON SHOKUHIN KAGAKU KOGAKU KAISHI, 2010, 57 (05): : 215 - 219
  • [30] SPECTRAL ATTENUATION OF OPTICAL FIBERS MEASURED BY FT-IR SPECTROSCOPY
    FRANK, WFX
    GOERTZ, W
    BELZ, HH
    [J]. APPLIED SPECTROSCOPY, 1987, 41 (02) : 323 - 326