Influence of denoising on classification results in the context of hyperspectral data: High Definition FT-IR imaging

被引:17
|
作者
Raczkowska, Magda K. [1 ,2 ]
Koziol, Paulina [1 ]
Urbaniak-Wasik, Slawka [3 ]
Paluszkiewicz, Czeslawa [1 ]
Kwiatek, Wojciech M. [1 ]
Wrobel, Tomasz P. [1 ]
机构
[1] Polish Acad Sci, Inst Nucl Phys, PL-31342 Krakow, Poland
[2] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Mickiewicza 30, Krakow, Poland
[3] NZOZ Pathol Dept, Jagiellonska 70, Kielce, Poland
关键词
FT-IR imaging; PCA; MNF; Deep neural network; Wavelets; Random forest;
D O I
10.1016/j.aca.2019.07.045
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Owing to the high information content about the biochemical composition of the sample, the implementation of Fourier-Transform Infrared Spectroscopy (FT-IR) in the clinic is currently under investigation by many researchers. Cancer biology with the use of histopathological models is one of the most explored application areas. Most of the publications show sensitivity of the method to be above 90%, however, it is still often not enough for clinical standards. Robust denoising techniques with an optimized classification model allow to shorten the experimental acquisition times which still are a bottleneck for FT-IR translation into the clinic. The main premise of this work is to evaluate denoising impact on classification results using spectral techniques: Savitzky Golay (SG), Wavelets (WV), Principal Component Analysis (PCA) and Minimum Noise Fraction (MNF); and spatial techniques: Deep Neural Network (DNN), Median Filter. Using denoising methods, especially MNF and PCA, gave significant improvement of the classification and prediction results. Moreover, the increase in pixel level accuracy for High Definition data (1.1 mu m projected pixel size) was found to be dependent on the complexity of the histopathological class and reached even 43-44% level, while core level increase reached around 28%. Moreover, we investigated the impact of denoising methods on the spectral input to better understand the mechanism of such large improvement. The results presented here highlight the benefits and the importance of proper denoising for classification purposes of FT-IR imaging data. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:39 / 47
页数:9
相关论文
共 44 条
  • [1] Comparison of spectral and spatial denoising techniques in the context of High Definition FT-IR imaging hyperspectral data
    Koziol, Paulina
    Raczkowska, Magda K.
    Skibinska, Justyna
    Urbaniak-Wasik, Slawka
    Paluszkiewicz, Czeslawa
    Kwiatek, Wojciech
    Wrobel, Tomasz P.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [2] Comparison of spectral and spatial denoising techniques in the context of High Definition FT-IR imaging hyperspectral data
    Paulina Koziol
    Magda K. Raczkowska
    Justyna Skibinska
    Sławka Urbaniak-Wasik
    Czesława Paluszkiewicz
    Wojciech Kwiatek
    Tomasz P. Wrobel
    [J]. Scientific Reports, 8
  • [3] Author Correction: Comparison of spectral and spatial denoising techniques in the context of High Definition FT-IR imaging hyperspectral data
    Paulina Koziol
    Magda K. Raczkowska
    Justyna Skibinska
    Sławka Urbaniak-Wasik
    Czesława Paluszkiewicz
    Wojciech Kwiatek
    Tomasz P. Wrobel
    [J]. Scientific Reports, 10
  • [4] Comparison of spectral and spatial denoising techniques in the context of High Definition FT-IR imaging hyperspectral data (vol 8, 14351, 2018)
    Koziol, Paulina
    Raczkowska, Magda K.
    Skibinska, Justyna
    Urbaniak-Wasik, Slawka
    Paluszkiewicz, Czeslawa
    Kwiatek, Wojciech
    Wrobel, Tomasz P.
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [5] Spatial sampling effect on data structure and random forest classification of tissue types in High Definition and Standard Definition FT-IR imaging
    Liberda, Danuta
    Kosowska, Karolina
    Koziol, Paulina
    Wrobel, Tomasz P.
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2021, 217
  • [6] Processing FT-IR imaging data for morphology visualization
    Bhargava, R
    Wang, SQ
    Koenig, JL
    [J]. APPLIED SPECTROSCOPY, 2000, 54 (11) : 1690 - 1706
  • [7] Influence of interference effects on the spectral quality and histological classification by FT-IR imaging in transflection geometry
    Liberda, Danuta
    Koziol, Paulina
    Raczkowska, Magda K.
    Kwiatek, Wojciech M.
    Wrobel, Tomasz P.
    [J]. ANALYST, 2021, 146 (02) : 646 - 654
  • [8] RECONSTRUCTING FT-IR SPECTROSCOPIC IMAGING DATA WITH A SPARSE PRIOR
    Brady, Spencer P.
    Do, Minh N.
    Bhargava, Rohit
    [J]. 2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 829 - +
  • [9] Random forest microplastic classification using spectral subsamples of FT-IR hyperspectral images
    Valls-Conesa, Jordi
    Winterauer, Dominik J. J.
    Kroeger-Lui, Niels
    Roth, Sascha
    Liu, Fan
    Luettjohann, Stephan
    Harig, Roland
    Vollertsen, Jes
    [J]. ANALYTICAL METHODS, 2023, 15 (18) : 2226 - 2233
  • [10] FT-IR Analysis and Hyperspectral Imaging Applied to Postconsumer Plastics Packaging Characterization and Sorting
    Bonifazi, Giuseppe
    Di Maio, Francesco
    Potenza, Fabio
    Serranti, Silvia
    [J]. IEEE SENSORS JOURNAL, 2016, 16 (10) : 3428 - 3434