INCM: neutrosophic c-means clustering algorithm for interval-valued data

被引:5
|
作者
Qiu, Haoye [1 ]
Liu, Zhe [2 ]
Letchmunan, Sukumar [2 ]
机构
[1] Hainan Univ, Sch Comp Sci & Technol, Haikou 570228, Hainan, Peoples R China
[2] Univ Sains Malaysia, Sch Comp Sci, Gelugor 11800, Penang, Malaysia
关键词
Clustering; Neutrosophic c-means; Interval-valued data; Neutrosophic partition; FUZZY;
D O I
10.1007/s41066-024-00452-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data clustering has emerged as a prospective technique for analyzing interval-valued data and has found extensive applications across various practical domains. However, the presence of outliers and imprecise information in the real world renders fuzzy clustering cannot capture the overall information of complex data. Despite neutrosophic c-means clustering can reflect the imprecision and uncertainty and is immune to outliers, the inherent limitation lies in its capability to exclusively represent single-valued data. To tackle the above dilemma, in this paper, we propose a suitable extension of neutrosophic c-means clustering, termed as INCM, especially designed for interval-valued data. We formulate a novel objective function and provide iterative procedures for updating cluster prototype and neutrosophic partition. Finally, we conduct numerous experiments to illustrate the superiority of INCM against existing clustering algorithms on synthetic and real-world data sets.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Possibilistic Clustering Methods for Interval-Valued Data
    Pimentel, Bruno Almeida
    De Souza, Renata M. C. R.
    [J]. INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2014, 22 (02) : 263 - 291
  • [32] Trimmed fuzzy clustering for interval-valued data
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Massari, Riccardo
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2015, 9 (01) : 21 - 40
  • [33] Fuzzy clustering of spatial interval-valued data
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Federico, Lorenzo
    Vitale, Vincenzina
    [J]. SPATIAL STATISTICS, 2023, 57
  • [34] A fuzzy C-means algorithm for optimizing data clustering
    Hashemi, Seyed Emadedin
    Gholian-Jouybari, Fatemeh
    Hajiaghaei-Keshteli, Mostafa
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2023, 227
  • [35] Fuzzy c-ordered medoids clustering for interval-valued data
    D'Urso, Pierpaolo
    Leski, Jacek M.
    [J]. PATTERN RECOGNITION, 2016, 58 : 49 - 67
  • [36] Adaptive fuzzy c-means clustering algorithm for interval data type based on interval-dividing technique
    Chaozheng Bao
    Hongming Peng
    Di He
    Junning Wang
    [J]. Pattern Analysis and Applications, 2018, 21 : 803 - 812
  • [37] Adaptive fuzzy c-means clustering algorithm for interval data type based on interval-dividing technique
    Bao, Chaozheng
    Peng, Hongming
    He, Di
    Wang, Junning
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2018, 21 (03) : 803 - 812
  • [38] Interval-Valued Neutrosophic Extension of EDAS Method
    Karasan, Ali
    Kahraman, Cengiz
    [J]. ADVANCES IN FUZZY LOGIC AND TECHNOLOGY 2017, VOL 2, 2018, 642 : 343 - 357
  • [39] Interval-valued fuzzy clustering
    Pagola, M.
    Jurio, A.
    Barrenechea, E.
    Fernandez, J.
    Bustince, H.
    [J]. PROCEEDINGS OF THE 2015 CONFERENCE OF THE INTERNATIONAL FUZZY SYSTEMS ASSOCIATION AND THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY, 2015, 89 : 1288 - 1294
  • [40] Neutrosophic Topp-Leone Distribution for Interval-Valued Data Analysis
    Ahsan-ul-Haq, Muhammad
    Zafar, Javeria
    Aslam, Muhammad
    Tariq, Saadia
    [J]. JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2024, 23 (02): : 164 - 173