Possibilistic Clustering Methods for Interval-Valued Data

被引:3
|
作者
Pimentel, Bruno Almeida [1 ]
De Souza, Renata M. C. R. [1 ]
机构
[1] Univ Fed Pernambuco UFPE, Ctr Informat CIn, BR-50740560 Recife, PE, Brazil
关键词
Symbolic data analysis; interval data; possibilistic c-means clustering method; noise; outlier; FUZZY; ALGORITHMS;
D O I
10.1142/S0218488514500135
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Outliers may have many anomalous causes, for example, credit card fraud, cyber-intrusion or breakdown of a system. Several research areas and application domains have investigated this problem. The popular fuzzy c-means algorithm is sensitive to noise and outlying data. In contrast, the possibilistic partitioning methods are used to solve these problems and other ones. The goal of this paper is to introduce cluster algorithms for partitioning a set of symbolic interval-type data using the possibilistic approach. In addition, a new way of measuring the membership value, according to each feature, is proposed. Experiments with artificial and real symbolic interval-type data sets are used to evaluate the methods. The results of the proposed methods are better than the traditional soft clustering ones.
引用
收藏
页码:263 / 291
页数:29
相关论文
共 50 条
  • [1] On interval-valued possibilistic clustering with a generalized objective function
    Mezei, Jozsef
    Sarlin, Peter
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 824 - 830
  • [2] Symbolic Clustering with Interval-Valued Data
    Sato-Ilic, Mika
    [J]. COMPLEX ADAPTIVE SYSTEMS, 2011, 6
  • [3] Two clustering methods based on the Ward's method and dendrograms with interval-valued dissimilarities for interval-valued data
    Ogasawara, Yu
    Kon, Masamichi
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2021, 129 : 103 - 121
  • [4] Interval-valued possibilistic fuzzy C-means clustering algorithm
    Ji, Zexuan
    Xia, Yong
    Sun, Quansen
    Cao, Guo
    [J]. FUZZY SETS AND SYSTEMS, 2014, 253 : 138 - 156
  • [5] Trimmed fuzzy clustering for interval-valued data
    Pierpaolo D’Urso
    Livia De Giovanni
    Riccardo Massari
    [J]. Advances in Data Analysis and Classification, 2015, 9 : 21 - 40
  • [6] Trimmed fuzzy clustering for interval-valued data
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Massari, Riccardo
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2015, 9 (01) : 21 - 40
  • [7] Fuzzy clustering of spatial interval-valued data
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Federico, Lorenzo
    Vitale, Vincenzina
    [J]. SPATIAL STATISTICS, 2023, 57
  • [8] Interval-valued fuzzy clustering
    Pagola, M.
    Jurio, A.
    Barrenechea, E.
    Fernandez, J.
    Bustince, H.
    [J]. PROCEEDINGS OF THE 2015 CONFERENCE OF THE INTERNATIONAL FUZZY SYSTEMS ASSOCIATION AND THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY, 2015, 89 : 1288 - 1294
  • [9] Soft subspace clustering of interval-valued data with regularizations
    Rodriguez, Sara I. R.
    de Carvalho, Francisco de A. T.
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 227
  • [10] Participatory Learning Fuzzy Clustering for Interval-Valued Data
    Maciel, Leandro
    Ballini, Rosangela
    Gomide, Fernando
    Yager, Ronald R.
    [J]. INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS, IPMU 2016, PT I, 2016, 610 : 687 - 698