Possibilistic Clustering Methods for Interval-Valued Data

被引:3
|
作者
Pimentel, Bruno Almeida [1 ]
De Souza, Renata M. C. R. [1 ]
机构
[1] Univ Fed Pernambuco UFPE, Ctr Informat CIn, BR-50740560 Recife, PE, Brazil
关键词
Symbolic data analysis; interval data; possibilistic c-means clustering method; noise; outlier; FUZZY; ALGORITHMS;
D O I
10.1142/S0218488514500135
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Outliers may have many anomalous causes, for example, credit card fraud, cyber-intrusion or breakdown of a system. Several research areas and application domains have investigated this problem. The popular fuzzy c-means algorithm is sensitive to noise and outlying data. In contrast, the possibilistic partitioning methods are used to solve these problems and other ones. The goal of this paper is to introduce cluster algorithms for partitioning a set of symbolic interval-type data using the possibilistic approach. In addition, a new way of measuring the membership value, according to each feature, is proposed. Experiments with artificial and real symbolic interval-type data sets are used to evaluate the methods. The results of the proposed methods are better than the traditional soft clustering ones.
引用
收藏
页码:263 / 291
页数:29
相关论文
共 50 条
  • [41] Partitioning fuzzy clustering algorithms for interval-valued data based on Hausdorff distances
    de Carvalho, Francisco de A. T.
    Pimentel, Julio T.
    [J]. PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 1379 - 1384
  • [42] Constrained Regression for Interval-Valued Data
    Gonzalez-Rivera, Gloria
    Lin, Wei
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2013, 31 (04) : 473 - 490
  • [43] INCM: neutrosophic c-means clustering algorithm for interval-valued data
    Haoye Qiu
    Zhe Liu
    Sukumar Letchmunan
    [J]. Granular Computing, 2024, 9
  • [44] Resistant Regression for Interval-Valued Data
    Renan, Jobson
    Silva, Jornandes Dias
    Galdino, Sergio
    [J]. 2013 1ST BRICS COUNTRIES CONGRESS ON COMPUTATIONAL INTELLIGENCE AND 11TH BRAZILIAN CONGRESS ON COMPUTATIONAL INTELLIGENCE (BRICS-CCI & CBIC), 2013, : 277 - 281
  • [45] Spatial analysis for interval-valued data
    Workman, Austin
    Song, Joon Jin
    [J]. JOURNAL OF APPLIED STATISTICS, 2023,
  • [46] Quantile Regression of Interval-Valued Data
    Fagundes, Roberta A. A.
    de Souza, Renata M. C. R.
    Soares, Yanne M. G.
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2586 - 2591
  • [47] Two partitional methods for interval-valued data using mahalanobis distances
    de Souza, RMCR
    de Carvalho, FAT
    Tenorio, CP
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2004, 2004, 3315 : 454 - 463
  • [48] Methods of ranking for aggregated fuzzy numbers from interval-valued data
    Gunn, Justin Kane
    Khorshidi, Hadi Akbarzadeh
    Aickelin, Uwe
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [49] A novel interval-valued data driven type-2 possibilistic local information c-means clustering for land cover classification
    Wu, Chengmao
    Guo, Xiaokang
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 148 : 80 - 116
  • [50] Multiple Linear Regression Models on Interval-valued Dengue Data with Interval-valued Climatic Variables
    Attanayake, A. M. C. H.
    Perera, S. S. N.
    Liyanage, U. P.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2020, 59 (03): : 49 - 60