Global sharp gradient estimates for a nonlinear parabolic equation on Riemannian manifolds

被引:0
|
作者
Chuan, Le Huy [1 ]
Dung, Nguyen Thac [1 ]
Manh, Nguyen Tien [1 ]
机构
[1] VNU Univ Sci, Fac Math Mech & Informat, Hanoi, Vietnam
关键词
Bochner techniques; maximum principle; nonlinear parabolic equations; sharp gradient estimates; HEAT-EQUATION;
D O I
10.1515/anly-2023-0022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we employ the techniques in [C. Cavaterra, S. Dipierro, Z. Gao and E. Valdinoci, Global gradient estimates for a general type of nonlinear parabolic equations, J. Geom. Anal. 32 (2022), no. 2, Paper No. 65] and the approach in [H. T. Dung and N. T. Dung, Sharp gradient estimates for a heat equation in Riemannian manifolds, Proc. Amer. Math. Soc. 147 (2019), no. 12, 5329-5338] to derive sharp gradient estimates for a positive solution to the heat equation u(t) = Delta u + au log uin a complete noncompact Riemannian manifold (where a is a real constant). This is an extension of the gradient estimates of Dung and Dung.
引用
收藏
页码:179 / 190
页数:12
相关论文
共 50 条