Gradient estimates for a weighted nonlinear parabolic equation

被引:1
|
作者
Mi, Rong [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R China
关键词
Gradient estimates; Weighted nonlinear parabolic equation; Bakry-Emery Ricci curvature; HEAT-EQUATION; THEOREM; KERNEL;
D O I
10.1007/s43034-019-00006-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (Mn, g, e- f dv) be a complete smooth metric measure space. We prove elliptic gradient estimates for positive solutions of a weighted nonlinear parabolic equation .f -.. t u(x, t) + q(x, t)u(x, t) + au(x, t)(ln u(x, t))a = 0, where (x, t). M x(-8,8) and a, a are arbitrary constants. Under the assumption that the 8-Bakry-Emery Ricci curvature is bounded from below, we obtain a local elliptic (Hamilton's type and Souplet-Zhang's type) gradient estimates to positive smooth solutions of this equation.
引用
收藏
页码:334 / 349
页数:16
相关论文
共 50 条