Global gradient estimates for nonlinear parabolic operators

被引:3
|
作者
Dipierro, Serena [1 ]
Gao, Zu [2 ]
Valdinoci, Enrico [1 ]
机构
[1] Univ Western Australia, Dept Math & Stat, 35 Stirling Highway, Crawley 6009, Australia
[2] Wuhan Univ Technol, Sch Sci, Dept Math, 122 Luoshi Rd, Wuhan 430070, Hubei, Peoples R China
基金
澳大利亚研究理事会;
关键词
Parabolic equations on Riemannian manifolds; maximum principle; global gradient estimates; RIEMANNIAN-MANIFOLDS; EQUATION;
D O I
10.1051/cocv/2021016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a parabolic equation driven by a nonlinear diffusive operator and we obtain a gradient estimate in the domain where the equation takes place. This estimate depends on the structural constants of the equation, on the geometry of the ambient space and on the initial and boundary data. As a byproduct, one easily obtains a universal interior estimate, not depending on the parabolic data. The setting taken into account includes sourcing terms and general diffusion coefficients. The results are new, to the best of our knowledge, even in the Euclidean setting, though we treat here also the case of a complete Riemannian manifold.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] GLOBAL GRADIENT ESTIMATES IN WEIGHTED LEBESGUE SPACES FOR PARABOLIC OPERATORS
    Byun, Sun-Sig
    Palagachev, Dian K.
    Softova, Lubomira G.
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (01) : 67 - 83
  • [2] Global Gradient Estimates for a General Type of Nonlinear Parabolic Equations
    Cecilia Cavaterra
    Serena Dipierro
    Zu Gao
    Enrico Valdinoci
    [J]. The Journal of Geometric Analysis, 2022, 32
  • [3] Global Gradient Estimates for a General Type of Nonlinear Parabolic Equations
    Cavaterra, Cecilia
    Dipierro, Serena
    Gao, Zu
    Valdinoci, Enrico
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (02)
  • [4] Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains
    Byun, Sun-Sig
    Ok, Jihoon
    Ryu, Seungjin
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (11) : 4290 - 4326
  • [5] Global sharp gradient estimates for a nonlinear parabolic equation on Riemannian manifolds
    Chuan, Le Huy
    Dung, Nguyen Thac
    Manh, Nguyen Tien
    [J]. ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024, 44 (03): : 179 - 190
  • [6] Global estimates for nonlinear parabolic equations
    Baroni, Paolo
    Di Castro, Agnese
    Palatucci, Giampiero
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2013, 13 (01) : 163 - 195
  • [7] Global estimates for nonlinear parabolic equations
    Paolo Baroni
    Agnese Di Castro
    Giampiero Palatucci
    [J]. Journal of Evolution Equations, 2013, 13 : 163 - 195
  • [8] Gradient estimates for a weighted nonlinear parabolic equation
    Mi, Rong
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (02) : 334 - 349
  • [9] Gradient estimates in generalized Morrey spaces for parabolic operators
    Byun, Sun-Sig
    Softova, Lubomira G.
    [J]. MATHEMATISCHE NACHRICHTEN, 2015, 288 (14-15) : 1602 - 1614
  • [10] Gradient estimates for doubly nonlinear parabolic equations
    A. V. Ivanov
    [J]. Journal of Mathematical Sciences, 1999, 93 (5) : 661 - 688