Characterizations of commutators of the Hardy-Littlewood maximal function on Triebel-Lizorkin spaces

被引:0
|
作者
Lu, Guanghui [1 ]
Wang, Dinghuai [2 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
[2] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Peoples R China
基金
中国国家自然科学基金;
关键词
characterization; commutator; Hardy-Littlewood maximal function; Lipschitz space; Triebel-Lizorkin space;
D O I
10.21136/CMJ.2023.0116-22
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the mapping property of the commutator of Hardy-Littlewood maximal function on Triebel-Lizorkin spaces. Also, some new characterizations of the Lipschitz spaces are given.
引用
收藏
页码:513 / 524
页数:12
相关论文
共 50 条
  • [41] Continuity of Hardy-Littlewood Maximal Function
    Wu, Di
    Yan, Dun-yan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (04): : 982 - 990
  • [42] ON THE HARDY-LITTLEWOOD MAXIMAL FUNCTION FOR THE CUBE
    Bourgain, Jean
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 203 (01) : 275 - 293
  • [43] On the Hardy-Littlewood maximal function for the cube
    Jean Bourgain
    Israel Journal of Mathematics, 2014, 203 : 275 - 293
  • [44] Pointwise characterizations of Besov and Triebel-Lizorkin spaces and quasiconformal mappings
    Koskela, Pekka
    Yang, Dachun
    Zhou, Yuan
    ADVANCES IN MATHEMATICS, 2011, 226 (04) : 3579 - 3621
  • [45] Littlewood-Paley Characterizations of Weighted Anisotropic Triebel-Lizorkin Spaces via Averages on Balls II
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2020, 39 (01): : 1 - 26
  • [46] On Hardy-Littlewood maximal functions in Orlicz spaces
    Kita, H
    MATHEMATISCHE NACHRICHTEN, 1997, 183 : 135 - 155
  • [47] Functional characterizations of realized homogeneous Besov and Triebel-Lizorkin spaces
    Gheribi, Bochra
    Moussai, Madani
    FILOMAT, 2024, 38 (13) : 4417 - 4440
  • [49] Littlewood-Paley Characterizations of Hajlasz-Sobolev and Triebel-Lizorkin Spaces via Averages on Balls
    Chang, Der-Chen
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    POTENTIAL ANALYSIS, 2017, 46 (02) : 227 - 259
  • [50] Hardy's inequality and embeddings in holomorphic Triebel-Lizorkin spaces
    Ortega, JM
    Fàbrega, J
    ILLINOIS JOURNAL OF MATHEMATICS, 1999, 43 (04) : 733 - 751