Pointwise characterizations of Besov and Triebel-Lizorkin spaces and quasiconformal mappings

被引:110
|
作者
Koskela, Pekka [1 ]
Yang, Dachun [2 ]
Zhou, Yuan [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 芬兰科学院;
关键词
Quasiconformal mapping; Quasisymmetric mapping; Fractional Hajlasz gradient; Besov space; Hajlasz-Besov space; Triebel-Lizorkin space; Hajlasz-Triebel-Lizorkin space; Grand Besov space; Grand Triebel-Lizorkin space; Metric measure space; SOBOLEV FUNCTIONS; DECOMPOSITIONS; INEQUALITY; DIMENSION;
D O I
10.1016/j.aim.2010.10.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors characterize, in terms of pointwise inequalities, the classical Besov spaces (B) over dot(p,q)(s) and Triebel-Lizorkin spaces (F) over dot(p,q)(s) for all s is an element of (0, 1) and p, q is an element of (n/(n + s), infinity] both in R-n and in the metric measure spaces enjoying the doubling and reverse doubling properties. Applying this characterization, the authors prove that quasiconformal mappings preserve (F) over dot(n/s,q)(s) on R-n for all s is an element of (0, 1) and q is an element of (n/(n + s), infinity]. A metric measure space version of the above morphism property is also established. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:3579 / 3621
页数:43
相关论文
共 50 条
  • [1] Pointwise Characterizations of Besov and Triebel-Lizorkin Spaces with Generalized Smoothness and Their Applications
    Li, Zi Wei
    Yang, Da Chun
    Yuan, Wen
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (04) : 623 - 661
  • [2] POINTWISE CHARACTERIZATIONS OF BESOV AND TRIEBEL-LIZORKIN SPACES IN TERMS OF AVERAGES ON BALLS
    Yang, Dachun
    Yuan, Wen
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (11) : 7631 - 7655
  • [3] POINTWISE MULTIPLICATION OF BESOV AND TRIEBEL-LIZORKIN SPACES
    JOHNSEN, J
    [J]. MATHEMATISCHE NACHRICHTEN, 1995, 175 : 85 - 133
  • [4] Composition of quasiconformal mappings and functions in Triebel-Lizorkin spaces
    Hencl, Stanislav
    Koskela, Pekka
    [J]. MATHEMATISCHE NACHRICHTEN, 2013, 286 (07) : 669 - 678
  • [5] Pointwise characterizations of variable Besov and Triebel-Lizorkin spaces via Hajłasz gradients
    He, Yu
    Sun, Qi
    Zhuo, Ciqiang
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (02) : 944 - 969
  • [6] Pointwise characterizations of variable Besov and Triebel-Lizorkin spaces via Hajłasz gradients
    Yu He
    Qi Sun
    Ciqiang Zhuo
    [J]. Fractional Calculus and Applied Analysis, 2024, 27 : 944 - 969
  • [7] Characterizations of Besov and Triebel-Lizorkin spaces on metric measure spaces
    Gogatishvili, Amiran
    Koskela, Pekka
    Zhou, Yuan
    [J]. FORUM MATHEMATICUM, 2013, 25 (04) : 787 - 819
  • [8] Pointwise multipliers for Triebel-Lizorkin and Besov spaces on Lie groups
    Bruno, Tommaso
    Peloso, Marco M.
    Vallarino, Maria
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 188
  • [9] Besov and Triebel-Lizorkin spaces on metric spaces: Embeddings and pointwise multipliers
    Yuan, Wen
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (01) : 434 - 457
  • [10] Pointwise characterization of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type
    Alvarado, Ryan
    Wang, Fan
    Yang, Dachun
    Yuan, Wen
    [J]. STUDIA MATHEMATICA, 2023, 268 (02) : 121 - 166