Ultradense One-Memristor Ternary-Content-Addressable Memory Based on Ferroelectric Diodes

被引:6
|
作者
Zhang, Zhaohao [1 ,2 ]
Zhang, Fan [1 ,2 ]
Zhang, Yadong [1 ,2 ]
Xu, Gaobo [1 ,2 ]
Wu, Zhenhua [1 ,2 ]
Zhang, Qingzhu [1 ,2 ]
Li, Yongliang [1 ,2 ]
Yin, Huaxiang [1 ,2 ]
Luo, Jun [1 ,2 ]
Wang, Wenwu [1 ,2 ]
Ye, Tianchun [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Microelect, Key Lab Microelect Devices & Integrated Technol, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Sch Integrated Circuits, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-volatile memory; ambipolar; ferroelectric diode; content-addressable storage; SEARCH; DESIGN; CELL; TCAM;
D O I
10.1109/LED.2022.3223335
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this Letter, for the first time, one-memristor (1M)-based ternary-content-addressable memory (TCAM) with an ultradense 4F(2) cell area is proposed on a single reconfigurable TiN/hafnium zirconium oxide (HZO)/indium gallium zinc oxide (IGZO)/TiN ferroelectric (FE) diode. By modulating the FE-polarization-controlled Schottky junction that exists at the interface, reconfigured P-N, N-P, and ohmic like junctions of the FE diodes were designed for '0', '1', and 'X' storage states in the TCAM cell, respectively. In addition to non-volatile FE polarization for data storage, ambipolar-like behavior induced by the symmetrical junction characteristics was obtained on the diodes for searching queries. Using both non-volatile and ambipolar-like characteristics, typical TCAM functions with a maximum driving on/off ratio of similar to 500 were confirmed experimentally on a single FE diode, indicating the great potential of this memory device in area-efficient artificial intelligence processors.
引用
收藏
页码:64 / 67
页数:4
相关论文
共 50 条
  • [21] Lifelong Learning with Monolithic 3D Ferroelectric Ternary Content-Addressable Memory
    Dutta, S.
    Khanna, A.
    Ye, H.
    Sharifi, M. M.
    Kazemi, A.
    San Jose, M.
    Aabrar, K. A.
    Mir, J. G.
    Niemer, M.
    Hu, X. S.
    Datta, S.
    2021 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM), 2021,
  • [22] Gate All around CNTFET based Ternary Content Addressable Memory
    Ganie, Sabzar Shafi
    Singh, Amandeep
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2022, 11 (06)
  • [23] Delayed Switching Applied to Memristor Content Addressable Memory Cell
    Chen, Wanlong
    Yang, Xiao
    Wang, Frank Z.
    WORLD CONGRESS ON ENGINEERING - WCE 2013, VOL I, 2013, : 354 - 357
  • [24] FPGA Implementation of SRAM-based Ternary Content Addressable Memory
    Ullah, Zahid
    Jaiswal, Manish Kumar
    Chan, Y. C.
    Cheung, Ray C. C.
    2012 IEEE 26TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS & PHD FORUM (IPDPSW), 2012, : 383 - 389
  • [25] Design and Implementation of Reversible Logic Based Ternary Content Addressable Memory
    Santhi, C.
    Babu, Moparthy Gurunadha
    SMART INTELLIGENT COMPUTING AND APPLICATIONS, VOL 2, 2020, 160 : 405 - 413
  • [26] Hybrid Partitioned SRAM-Based Ternary Content Addressable Memory
    Ullah, Zahid
    Ilgon, Kim
    Baeg, Sanghyeon
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2012, 59 (12) : 2969 - 2979
  • [27] Self-biasing memristor crossbar used for string matching and ternary content-addressable memory implementation
    Yakopcic, C.
    Bontupalli, V.
    Hasan, R.
    Mountain, D.
    Taha, T. M.
    ELECTRONICS LETTERS, 2017, 53 (07) : 463 - 465
  • [28] Low Power Spintronic Ternary Content Addressable Memory
    Gnawali, Krishna Prasad
    Mozaffari, Seyed Nima
    Tragoudas, Spyros
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2018, 17 (06) : 1206 - 1216
  • [29] Performance Analysis of Ternary Content Addressable Memory (TCAM)
    AtikFoysal, Md.
    ZahidulAnam, Md.
    Islam, Md. Shoriful
    Tahmid, Intisar
    Mondal, Kartick
    2015 INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL ENGINEERING (ICAEE), 2015, : 105 - 108
  • [30] Implementation and evaluation of Ternary Content Addressable Memory with Individuality
    Naito, Tadashi
    Kumaki, Takeshi
    PROCEEDINGS OF 2018 IEEE DISTRIBUTED COMPUTING, VLSI, ELECTRICAL CIRCUITS AND ROBOTICS (DISCOVER), 2018, : 35 - 39