Ultradense One-Memristor Ternary-Content-Addressable Memory Based on Ferroelectric Diodes

被引:6
|
作者
Zhang, Zhaohao [1 ,2 ]
Zhang, Fan [1 ,2 ]
Zhang, Yadong [1 ,2 ]
Xu, Gaobo [1 ,2 ]
Wu, Zhenhua [1 ,2 ]
Zhang, Qingzhu [1 ,2 ]
Li, Yongliang [1 ,2 ]
Yin, Huaxiang [1 ,2 ]
Luo, Jun [1 ,2 ]
Wang, Wenwu [1 ,2 ]
Ye, Tianchun [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Microelect, Key Lab Microelect Devices & Integrated Technol, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Sch Integrated Circuits, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-volatile memory; ambipolar; ferroelectric diode; content-addressable storage; SEARCH; DESIGN; CELL; TCAM;
D O I
10.1109/LED.2022.3223335
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this Letter, for the first time, one-memristor (1M)-based ternary-content-addressable memory (TCAM) with an ultradense 4F(2) cell area is proposed on a single reconfigurable TiN/hafnium zirconium oxide (HZO)/indium gallium zinc oxide (IGZO)/TiN ferroelectric (FE) diode. By modulating the FE-polarization-controlled Schottky junction that exists at the interface, reconfigured P-N, N-P, and ohmic like junctions of the FE diodes were designed for '0', '1', and 'X' storage states in the TCAM cell, respectively. In addition to non-volatile FE polarization for data storage, ambipolar-like behavior induced by the symmetrical junction characteristics was obtained on the diodes for searching queries. Using both non-volatile and ambipolar-like characteristics, typical TCAM functions with a maximum driving on/off ratio of similar to 500 were confirmed experimentally on a single FE diode, indicating the great potential of this memory device in area-efficient artificial intelligence processors.
引用
收藏
页码:64 / 67
页数:4
相关论文
共 50 条
  • [41] A multiple-valued ferroelectric content-addressable memory
    Sheikholeslami, A
    Gulak, PG
    Hanyu, T
    1996 26TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 1996, : 74 - 79
  • [42] Modeling and Design for Magnetoelectric Ternary Content Addressable Memory (TCAM)
    Narla, Siri
    Kumar, Piyush
    Laguna, Ann Franchesca
    Reis, Dayane
    Sharon, X. Sharon
    Niemier, Michael
    Naeemi, Azad
    IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS, 2022, 8 (01): : 44 - 52
  • [43] Scalable Ternary Content Addressable Memory Implementation Using FPGAs
    Jiang, Weirong
    2013 ACM/IEEE SYMPOSIUM ON ARCHITECTURES FOR NETWORKING AND COMMUNICATIONS SYSTEMS (ANCS), 2013, : 71 - 82
  • [44] Deep Packet Inspection using Ternary Content Addressable Memory
    Jayashree, S.
    Shivashankarappa, N.
    2014 INTERNATIONAL CONFERENCE ON CIRCUITS, COMMUNICATION, CONTROL AND COMPUTING (I4C), 2014, : 441 - 447
  • [45] Experimental Demonstration of a Ferroelectric HfO2-Based Content Addressable Memory Cell
    Tan, Ava J.
    Chatterjee, Korok
    Zhou, Jiuren
    Kwon, Daewoong
    Liao, Yu-Hung
    Cheema, Suraj
    Hu, Chenming
    Salahuddin, Sayeef
    IEEE ELECTRON DEVICE LETTERS, 2020, 41 (02) : 240 - 243
  • [46] WDM Ternary Content-addressable Memory for Optical Links
    London, Yanir
    Van Vaerenbergh, Thomas
    Ramini, Luca
    Li, Can
    Graves, Catherine E.
    Fiorentino, Marco
    Beausoleil, Raymond G.
    2023 IEEE SILICON PHOTONICS CONFERENCE, SIPHOTONICS, 2023,
  • [47] Low power dual matchline ternary content addressable memory
    Manon, N
    Sachdev, M
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 2, PROCEEDINGS, 2004, : 633 - 636
  • [48] Robust High Speed Ternary Magnetic Content Addressable Memory
    Gupta, Mohit Kumar
    Hasan, Mohd
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (04) : 1163 - 1169
  • [49] High-Speed Memristive Ternary Content Addressable Memory
    Gnawali, Krishna P.
    Tragoudas, Spyros
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (03) : 1349 - 1360
  • [50] Heterogeneous graphene-CMOS ternary content addressable memory
    Khasanvis, Santosh
    Rahman, Mostafizur
    Moritz, Csaba Andras
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2014, 74 (06) : 2497 - 2503