Dispersion Characteristics and Applications of Higher Order Isosceles Triangular Meshes in the Finite Element Method

被引:0
|
作者
Niu, Yuhua [1 ,2 ]
Liu, Jinbo [1 ,2 ]
Luo, Wen [3 ]
Li, Zengrui [1 ,2 ]
Song, Jiming [1 ,2 ,4 ]
机构
[1] Commun Univ China, State Key Lab Media Convergence & Commun, Beijing 100024, Peoples R China
[2] Commun Univ China, Sch Informat & Commun Engn, Beijing 100024, Peoples R China
[3] Guizhou Normal Univ, Sch Phys & Elect Sci, Guiyang 550025, Peoples R China
[4] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
基金
中国国家自然科学基金;
关键词
Finite element analysis; Dispersion; Interpolation; Mathematical models; Transmission line matrix methods; Rectangular waveguides; Propagation; Dispersion error; equilateral triangular meshes; finite element method (FEM); isosceles triangular meshes; squares; NUMERICAL DISPERSION; NODAL ELEMENTS; DISCRETIZATION; EQUATIONS;
D O I
10.1109/OJAP.2023.3331217
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mesh division plays an important role in applications of the finite element method (FEM). The proposed research shows that under the same order, the equilateral triangular meshes have the most uniform dispersion distribution. The isosceles triangles with equal base and height have more uniform dispersion error than the square meshes, while the maximum phase error is similar. Taking the rectangular waveguide as an example, the relative errors in the cut-off frequency are analyzed based on different meshes. The numerical results show that under the same interpolation order and node numbers, the relative error of isosceles triangles with equal base and height for TE10 mode is the smallest. The results are useful in choosing appropriate element order, node density and mesh shape when applying FEM.
引用
收藏
页码:1171 / 1175
页数:5
相关论文
共 50 条
  • [41] Accurate higher order automated unstructured triangular meshes for airfoil designs in aerospace applications using parabolic arcs
    Devi, Supriya
    Nagaraja, K. V.
    Smitha, T. V.
    Jayan, Sarada
    AEROSPACE SCIENCE AND TECHNOLOGY, 2019, 88 : 405 - 420
  • [42] Overlapping solution finite element method - Higher order approximation and implementation
    Coyle, Joe
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (12) : 1910 - 1924
  • [43] Higher order tip enrichment of eXtended Finite Element Method in thermoelasticity
    Zamani, Arash
    Gracie, Robert
    Eslami, M. Reza
    COMPUTATIONAL MECHANICS, 2010, 46 (06) : 851 - 866
  • [44] Higher Order Multiscale Finite Element Method for Heat Transfer Modeling
    Klimczak, Marek
    Cecot, Witold
    MATERIALS, 2021, 14 (14)
  • [45] An algebraic multigrid method for higher-order finite element discretizations
    Shu, S.
    Sun, D.
    Xu, J.
    COMPUTING, 2006, 77 (04) : 347 - 377
  • [46] An Algebraic Multigrid Method for Higher-order Finite Element Discretizations
    S. Shu
    D. Sun
    J. Xu
    Computing, 2006, 77 : 347 - 377
  • [47] Higher order tip enrichment of eXtended Finite Element Method in thermoelasticity
    Arash Zamani
    Robert Gracie
    M. Reza Eslami
    Computational Mechanics, 2010, 46 : 851 - 866
  • [48] A higher-order finite element method for the linearised Euler equations
    Hamiche, K.
    Gabard, G.
    Beriot, H.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2014) AND INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2014), 2014, : 1311 - 1325
  • [49] HOFEM: Higher Order Finite Element Method Simulator for antenna analysis
    Garcia-Donoro, D.
    Amor-Martin, A.
    Garcia-Castillo, L. E.
    Salazar-Palma, M.
    Sarkar, T. K.
    2016 IEEE CONFERENCE ON ANTENNA MEASUREMENTS & APPLICATIONS (CAMA), 2016,
  • [50] A HIGHER ORDER FINITE ELEMENT METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS ON SURFACES
    Grande, Joerg
    Reusken, Arnold
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) : 388 - 414