Dispersion Characteristics and Applications of Higher Order Isosceles Triangular Meshes in the Finite Element Method

被引:0
|
作者
Niu, Yuhua [1 ,2 ]
Liu, Jinbo [1 ,2 ]
Luo, Wen [3 ]
Li, Zengrui [1 ,2 ]
Song, Jiming [1 ,2 ,4 ]
机构
[1] Commun Univ China, State Key Lab Media Convergence & Commun, Beijing 100024, Peoples R China
[2] Commun Univ China, Sch Informat & Commun Engn, Beijing 100024, Peoples R China
[3] Guizhou Normal Univ, Sch Phys & Elect Sci, Guiyang 550025, Peoples R China
[4] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
基金
中国国家自然科学基金;
关键词
Finite element analysis; Dispersion; Interpolation; Mathematical models; Transmission line matrix methods; Rectangular waveguides; Propagation; Dispersion error; equilateral triangular meshes; finite element method (FEM); isosceles triangular meshes; squares; NUMERICAL DISPERSION; NODAL ELEMENTS; DISCRETIZATION; EQUATIONS;
D O I
10.1109/OJAP.2023.3331217
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mesh division plays an important role in applications of the finite element method (FEM). The proposed research shows that under the same order, the equilateral triangular meshes have the most uniform dispersion distribution. The isosceles triangles with equal base and height have more uniform dispersion error than the square meshes, while the maximum phase error is similar. Taking the rectangular waveguide as an example, the relative errors in the cut-off frequency are analyzed based on different meshes. The numerical results show that under the same interpolation order and node numbers, the relative error of isosceles triangles with equal base and height for TE10 mode is the smallest. The results are useful in choosing appropriate element order, node density and mesh shape when applying FEM.
引用
收藏
页码:1171 / 1175
页数:5
相关论文
共 50 条
  • [31] LOCAL FLUX RECONSTRUCTIONS FOR STANDARD FINITE ELEMENT METHODS ON TRIANGULAR MESHES
    Becker, Roland
    Capatina, Daniela
    Luce, Robert
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2684 - 2706
  • [32] AGTHOM - AUTOMATIC-GENERATION OF TRIANGULAR AND HIGHER-ORDER MESHES
    MOSCARDINI, AO
    LEWIS, BA
    CROSS, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1983, 19 (09) : 1331 - 1353
  • [33] A Dispersion Analysis for the Finite-Element Method in Time Domain With Triangular Edge Elements
    Monorchio, Agostino
    Martini, Enrica
    Manara, Giuliano
    Pelosi, Giuseppe
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2002, 1 : 207 - 210
  • [34] EXTRAPOLATION OF THE FINITE ELEMENT METHOD ON GENERAL MESHES
    Lin, Qun
    Xie, Hehu
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (01) : 139 - 153
  • [35] An alternative alpha finite element method (AαFEM) for free and forced structural vibration using triangular meshes
    Nguyen-Thanh, N.
    Rabczuk, Timon
    Nguyen-Xuan, H.
    Bordas, Stephane P. A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (09) : 2112 - 2135
  • [36] Analysis of elastic wave simulation accuracy with discontinuous Galerkin finite element method based on triangular meshes
    Han D.
    Liu W.
    Si W.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2021, 56 (04): : 758 - 770
  • [37] Order Two Superconvergence of the CDG Finite Elements on Triangular and Tetrahedral Meshes
    Ye, Xiu
    Zhang, Shangyou
    CSIAM TRANSACTIONS ON APPLIED MATHEMATICS, 2023, 4 (02): : 256 - 274
  • [38] Optimal Order of Uniform Convergence for Finite Element Method on Bakhvalov-Type Meshes
    Jin Zhang
    Xiaowei Liu
    Journal of Scientific Computing, 2020, 85
  • [39] Optimal Order of Uniform Convergence for Finite Element Method on Bakhvalov-Type Meshes
    Zhang, Jin
    Liu, Xiaowei
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 85 (01)
  • [40] A second-order finite volume element method on quadrilateral meshes for elliptic equations
    Yang, Min
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (06): : 1053 - 1067