Dispersion Characteristics and Applications of Higher Order Isosceles Triangular Meshes in the Finite Element Method

被引:0
|
作者
Niu, Yuhua [1 ,2 ]
Liu, Jinbo [1 ,2 ]
Luo, Wen [3 ]
Li, Zengrui [1 ,2 ]
Song, Jiming [1 ,2 ,4 ]
机构
[1] Commun Univ China, State Key Lab Media Convergence & Commun, Beijing 100024, Peoples R China
[2] Commun Univ China, Sch Informat & Commun Engn, Beijing 100024, Peoples R China
[3] Guizhou Normal Univ, Sch Phys & Elect Sci, Guiyang 550025, Peoples R China
[4] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
基金
中国国家自然科学基金;
关键词
Finite element analysis; Dispersion; Interpolation; Mathematical models; Transmission line matrix methods; Rectangular waveguides; Propagation; Dispersion error; equilateral triangular meshes; finite element method (FEM); isosceles triangular meshes; squares; NUMERICAL DISPERSION; NODAL ELEMENTS; DISCRETIZATION; EQUATIONS;
D O I
10.1109/OJAP.2023.3331217
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Mesh division plays an important role in applications of the finite element method (FEM). The proposed research shows that under the same order, the equilateral triangular meshes have the most uniform dispersion distribution. The isosceles triangles with equal base and height have more uniform dispersion error than the square meshes, while the maximum phase error is similar. Taking the rectangular waveguide as an example, the relative errors in the cut-off frequency are analyzed based on different meshes. The numerical results show that under the same interpolation order and node numbers, the relative error of isosceles triangles with equal base and height for TE10 mode is the smallest. The results are useful in choosing appropriate element order, node density and mesh shape when applying FEM.
引用
收藏
页码:1171 / 1175
页数:5
相关论文
共 50 条
  • [21] A hybrid finite volume/finite element method for incompressible generalized Newtonian fluid flows on unstructured triangular meshes
    Wei Gao Ruxun Liu Department of Mathematics
    Acta Mechanica Sinica , 2009, (06) : 747 - 760
  • [22] A hybrid finite volume/finite element method for incompressible generalized Newtonian fluid flows on unstructured triangular meshes
    Wei Gao
    Ruxun Liu
    Acta Mechanica Sinica, 2009, 25 : 747 - 760
  • [23] A hybrid finite volume/finite element method for incompressible generalized Newtonian fluid flows on unstructured triangular meshes
    Gao, Wei
    Liu, Ruxun
    ACTA MECHANICA SINICA, 2009, 25 (06) : 747 - 760
  • [24] Superconvergence of quadratic finite volume method on triangular meshes
    Wang, Xiang
    Li, Yonghai
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 348 : 181 - 199
  • [25] Third order accurate large-particle finite volume method on unstructured triangular meshes
    Song, SH
    Chen, MZ
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 23 (05): : 1456 - 1463
  • [26] HOFEM: A Higher Order Finite Element Method Electromagnetic Simulator
    Garcia-Donoro, Daniel
    Martinez-Fernandez, Ignacio
    Garcia-Castillo, Luis E.
    Salazar-Palma, Magdalena
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS (ICCEM), 2015, : 10 - 12
  • [27] A higher-order Trace finite element method for shells
    Schoellhammer, Daniel
    Fries, Thomas-Peter
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (05) : 1217 - 1238
  • [28] TRIANGULAR ELEMENTS IN FINITE ELEMENT METHOD
    BRAMBLE, JH
    ZLAMAL, M
    MATHEMATICS OF COMPUTATION, 1970, 24 (112) : 809 - +
  • [29] Finite element modeling and multigrid preconditioner using adaptive triangular meshes
    Zhu, Yu
    Kuo, An-Yu
    Cangellaris, Andreas C.
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2006, 16 (06) : 357 - 359
  • [30] AUTOMATIC CONVERSION OF TRIANGULAR FINITE-ELEMENT MESHES TO QUADRILATERAL ELEMENTS
    JOHNSTON, BP
    SULLIVAN, JM
    KWASNIK, A
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1991, 31 (01) : 67 - 84