CO2 capture as bicarbonate using DMAPA with incorporation of surface activity

被引:6
|
作者
Carrasco-Jaim, Omar A. [2 ]
Xia, Haojun [1 ]
Weerasooriya, Upali P. [1 ]
Okuno, Ryosuke [1 ]
机构
[1] Univ Texas Austin, Hildebrand Dept Petr & Geosyst Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA
关键词
CO2; capture; absorption; Amine; DMAPA; Surfactant; Bicarbonate; NUCLEAR-MAGNETIC-RESONANCE; CARBON-DIOXIDE; POSTCOMBUSTION CAPTURE; CHEMICAL ABSORPTION; REACTION-KINETICS; AQUEOUS MEA; 3-DIMETHYLAMINOPROPYLAMINE; PERFORMANCE; CONVERSION; SOLVENTS;
D O I
10.1016/j.fuel.2023.128554
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We present for the first time the CO2 capture and in-situ conversion into bicarbonate as a carbon-bearing product using an amine with built-in surface activity. The surface-active amine was 3-(dimethylamino)propylamine (DMAPA) modified with propylene oxide (PO) groups (DMAPA-xPO, x = 4, 6, 8, 12). Analysis of the CO2 capture capacity data with 13C Nuclear Magnetic Resonance (NMR) spectroscopy determined the bicarbonate concentrations and the generation mechanism during the CO2 capture influenced by the PO groups, establishing a relationship between CO2 solubility, pH of the solution, and steric effect. Results demonstrated the effectiveness of the built-in surface activity with an optimal PO level (DMAPA-6PO). DMAPA-6PO enhanced the bicarbonate generation by 54%, in comparison to DMAPA, under ambient conditions.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Coupling electrochemical CO2 conversion with CO2 capture
    Ian Sullivan
    Andrey Goryachev
    Ibadillah A. Digdaya
    Xueqian Li
    Harry A. Atwater
    David A. Vermaas
    Chengxiang Xiang
    Nature Catalysis, 2021, 4 : 952 - 958
  • [42] Coupling electrochemical CO2 conversion with CO2 capture
    Sullivan, Ian
    Goryachev, Andrey
    Digdaya, Ibadillah A.
    Li, Xueqian
    Atwater, Harry A.
    Vermaas, David A.
    Xiang, Chengxiang
    NATURE CATALYSIS, 2021, 4 (11) : 952 - 958
  • [43] CO2 Capture and Transport
    Rubin, Edward S.
    ELEMENTS, 2008, 4 (05) : 311 - 317
  • [44] CO2 capture cost
    Blankinship, Steve
    POWER ENGINEERING, 2007, 111 (11) : 40 - 40
  • [45] Fastest CO2 capture
    O'DRISCOLL, C. A. T. H.
    CHEMISTRY & INDUSTRY, 2022, 86 (06) : 8 - 8
  • [46] The economics of CO2 capture
    Herzog, HJ
    GREENHOUSE GAS CONTROL TECHNOLOGIES, 1999, : 101 - 106
  • [47] CO2 CAPTURE TECHNOLOGIES
    Gutierrez-Cerezales, Pablo
    Burgos-Rodriguez, Silvia
    Vigil-Montano, Ma Reyes
    DYNA, 2014, 89 (04): : 360 - 365
  • [48] CO2 capture and utilization
    Anaya, Amanda M.
    Dillon, David L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [49] Rail to capture CO2
    King, Anthony
    CHEMISTRY & INDUSTRY, 2022, 86 (09) : 5 - 5
  • [50] Rational design of β-cyclodextrins-derived hierarchically porous carbons for CO2 capture: The roles of surface chemistry and porosity on CO2 capture
    Zhang, Yaofei
    Shi, Weiwei
    Zhang, Shouren
    Zhao, Shuang
    Yang, Baocheng
    Chang, Binbin
    JOURNAL OF CO2 UTILIZATION, 2022, 66