CO2 capture as bicarbonate using DMAPA with incorporation of surface activity

被引:6
|
作者
Carrasco-Jaim, Omar A. [2 ]
Xia, Haojun [1 ]
Weerasooriya, Upali P. [1 ]
Okuno, Ryosuke [1 ]
机构
[1] Univ Texas Austin, Hildebrand Dept Petr & Geosyst Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA
关键词
CO2; capture; absorption; Amine; DMAPA; Surfactant; Bicarbonate; NUCLEAR-MAGNETIC-RESONANCE; CARBON-DIOXIDE; POSTCOMBUSTION CAPTURE; CHEMICAL ABSORPTION; REACTION-KINETICS; AQUEOUS MEA; 3-DIMETHYLAMINOPROPYLAMINE; PERFORMANCE; CONVERSION; SOLVENTS;
D O I
10.1016/j.fuel.2023.128554
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We present for the first time the CO2 capture and in-situ conversion into bicarbonate as a carbon-bearing product using an amine with built-in surface activity. The surface-active amine was 3-(dimethylamino)propylamine (DMAPA) modified with propylene oxide (PO) groups (DMAPA-xPO, x = 4, 6, 8, 12). Analysis of the CO2 capture capacity data with 13C Nuclear Magnetic Resonance (NMR) spectroscopy determined the bicarbonate concentrations and the generation mechanism during the CO2 capture influenced by the PO groups, establishing a relationship between CO2 solubility, pH of the solution, and steric effect. Results demonstrated the effectiveness of the built-in surface activity with an optimal PO level (DMAPA-6PO). DMAPA-6PO enhanced the bicarbonate generation by 54%, in comparison to DMAPA, under ambient conditions.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Efficient CO2 capture from the air for high microalgal biomass production by a bicarbonate Pool
    Zhu, Chenba
    Zhai, Xiaoqian
    Xi, Yimei
    Wang, Jinghan
    Kong, Fantao
    Zhao, Yunpeng
    Chi, Zhanyou
    JOURNAL OF CO2 UTILIZATION, 2020, 37 : 320 - 327
  • [32] Experimental methodology for CO2 capture and sodium bicarbonate synthesis with producedwater from oil industry
    Hugo Gomes D’Amato Villardi
    Lidia Yokoyama
    Andre Young
    Andrea Azevedo Veiga
    Sergio Pagnin
    Journal of Petroleum Exploration and Production Technology, 2022, 12 : 2577 - 2585
  • [33] Experimental and modeling studies of bicarbonate forming amines for CO2 capture by NMR spectroscopy and VLE
    Xiao, Min
    Cui, Ding
    Zou, Liangyu
    Yang, Qi
    Gao, Hongxia
    Liang, Zhiwu
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 234
  • [34] CO2 and CO Capture on the ZnO Surface: A GCMC and Electronic Structure Study
    Gordijo, Julia Silva
    Rodrigues, Nailton Martins
    Martins, Joao B. L.
    ACS OMEGA, 2023, 8 (49): : 46830 - 46840
  • [35] CO2 Capture in the Cement Industry, Norcem CO2 Capture Project (Norway)
    Bjerge, Liv-Margrethe
    Brevik, Per
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 6455 - 6463
  • [36] CO2 Capture from Syngas Using Solid CO2 Sorbent and WGS Catalyst
    Lee, Joong Beom
    Eom, Tae Hyoung
    Park, Keun Woo
    Ryu, Jungho
    Baek, Jeom-In
    Kim, Kyeongsook
    Yang, Seug-Ran
    Ryu, Chong Kul
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 1133 - 1138
  • [37] Incorporation of an ionic liquid into a midblock-sulfonated multiblock polymer for CO2 capture
    Dai, Zhongde
    Ansaloni, Luca
    Ryan, Justin J.
    Spontak, Richard J.
    Deng, Liyuan
    JOURNAL OF MEMBRANE SCIENCE, 2019, 588
  • [38] EQUILIBRATION OF METABOLIC CO2 WITH PREFORMED CO2 AND BICARBONATE - AN UNEXPECTED FINDING
    HEMS, R
    SAEZ, GT
    FEBS LETTERS, 1983, 153 (02) : 438 - 440
  • [39] CO2 Capture and Sequestration
    Das, Diganta Bhusan
    CLEAN TECHNOLOGIES, 2024, 6 (02): : 494 - 496
  • [40] CO2 Capture Technology
    Noborisato T.
    Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2022, 91 (06): : 75 - 80