Benzoic acid as additive: A route to inhibit the formation of cracks in catalyst layer of proton exchange membrane fuel cells

被引:0
|
作者
Liu, Pengcheng [1 ]
Yang, Daijun [1 ]
Li, Bing [1 ]
Kang, Jialun [1 ]
Zhang, Cunman [1 ]
Ming, Pingwen [1 ]
Pan, Xiangmin [2 ]
Liu, Hengzhi [3 ]
机构
[1] Tongji Univ, Clean Energy Automot Engn Ctr, Sch Automot Studies, Shanghai 201804, Peoples R China
[2] Shanghai Motor Vehicle Inspect Certificat & Techno, Shanghai 201805, Peoples R China
[3] Xiangtan Univ, Key Lab Green Organ Synth & Applicat Hunan Prov, Minist Educ,Coll Chem, Key Lab Environmentally Friendly Chem & Applicat, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Crack; Catalyst layer; Benzoic acid; Catalyst ink; Molecular dynamic simulation; Proton exchange membrane fuel cells; MOLECULAR-DYNAMICS; IONOMER ADSORPTION; CARBON-BLACK; ELECTRODE; PERFORMANCE; SOLVENT; POLYMER; DEGRADATION; SIMULATION; MORPHOLOGY;
D O I
10.1016/j.jpowsour.2023.233817
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cracks are a common defect in the catalyst layers (CLs) of proton exchange membrane fuel cells (PEMFCs), deteriorating their performance. This study proposes benzoic acid as a cracking inhibitor in the catalyst ink. The additive strengthens the network of catalyst particles by promoting attractive interaction within them. Molecular dynamics simulations demonstrate that the inhibitor facilitates the desorption of ionomer from the Pt/carbon surface, weakening the repulsion force within catalyst particles. Rheology experiments indicate that the addition of benzoic acid transforms the catalyst ink from a sol-like to a gel-like, improving its viscosity and storage modulus. The stronger attractive interactions within the inhibitor-added ink impart anti-cracking ability, preventing stress release during the drying process. Furthermore, optical microscopy reveals a significant decrease in both the crack area and the maximum length of cracks in the CL after incorporating the inhibitor. Specifically, the crack area decreases from 13% to 2%, while the maximum crack length decreases from nearly 400 mu m to 150 mu m. Single cell tests show that the inhibitor-added sample exhibits a higher peak power density of 0.893 W/cm2 compared to the standard sample's 0.873 W/cm2. Overall, this study presents an effective method for manufacturing high-quality CLs in PEMFCs, ensuring improved performance.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Identification of performance degradations in catalyst layer and gas diffusion layer in proton exchange membrane fuel cells
    Zhang, Xu
    Yang, Yupeng
    Zhang, Xuyang
    Liu, Hongtan
    JOURNAL OF POWER SOURCES, 2020, 449
  • [22] Mechanism of catalyst degradation in proton exchange membrane fuel cells
    Virkar, Anil V.
    Zhou, Yingke
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (06) : B540 - B547
  • [23] Cathode catalyst layer design with gradients of ionomer distribution for proton exchange membrane fuel cells
    Shahgaldi, Samaneh
    Ozden, Adnan
    Li, Xianguo
    Hamdullahpur, Feridun
    ENERGY CONVERSION AND MANAGEMENT, 2018, 171 : 1476 - 1486
  • [24] A proposed agglomerate model for oxygen reduction in the catalyst layer of proton exchange membrane fuel cells
    Zhang, Xiaoxian
    Gao, Yuan
    Ostadi, Hossein
    Jiang, Kyle
    Chen, Rui
    ELECTROCHIMICA ACTA, 2014, 150 : 320 - 328
  • [25] Preparing a catalyst layer in magnetic field to improve the performance of proton exchange membrane fuel cells
    Sun, Xin
    Xu, Hongfeng
    Lu, Lu
    Xing, Wangyan
    Zhao, Hong
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2014, 44 (11) : 1179 - 1184
  • [26] A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells
    Zhang, Shengsheng
    Yuan, Xiao-Zi
    Hin, Jason Ng Cheng
    Wang, Haijiang
    Friedrich, K. Andreas
    Schulze, Mathias
    JOURNAL OF POWER SOURCES, 2009, 194 (02) : 588 - 600
  • [27] Solvent effect on the Nafion agglomerate morphology in the catalyst layer of the proton exchange membrane fuel cells
    Kim, Tae-Hyun
    Yi, Jae-You
    Jung, Chi-Young
    Jeong, Euigyung
    Yi, Sung-Chul
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (01) : 478 - 485
  • [28] Effect of the silica particle diameter on the morphology of catalyst layer in proton exchange membrane fuel cells
    Jang, Eun Kwang
    Lee, Sang Bin
    Kim, Tae-Hyun
    Yi, Sung-Chul
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2017, 18 (02): : 141 - 145
  • [29] Preparing a catalyst layer in magnetic field to improve the performance of proton exchange membrane fuel cells
    Xin Sun
    Hongfeng Xu
    Lu Lu
    Wangyan Xing
    Hong Zhao
    Journal of Applied Electrochemistry, 2014, 44 : 1179 - 1184
  • [30] Pore-Scale Simulation of Tortuosity in the Catalyst Layer of Proton Exchange Membrane Fuel Cells
    He, Yusong
    Hao, Liang
    Bai, Minli
    JOURNAL OF ENERGY ENGINEERING, 2024, 150 (04)