Mechanism of catalyst degradation in proton exchange membrane fuel cells

被引:106
|
作者
Virkar, Anil V. [1 ]
Zhou, Yingke [1 ]
机构
[1] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA
关键词
D O I
10.1149/1.2722563
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A mechanism of catalyst particle growth in proton exchange membrane fuel cells (PEMFCs) by Ostwald ripening is presented. Particle growth occurs as a coupled process involving platinum ion transport through aqueous liquid and/or ionomer, and electron transport through a carbon support. The dominating factor in degradation of a catalyst supported on carbon is the presence of platinum ions in solution (in liquid and/or in ionomer). Experiments were conducted on commercial PEMFC electrodes in three liquids, PtCl4 solution, dilute acid solution, and deionized water. Pt particle size grew from similar to 4 nm to >20 nm after 1 week in PtCl4 solution. By contrast, no detectable growth occurred in dilute acid or in deionized water. This demonstrates that the higher the Pt ion concentration, the faster the kinetics. The role of electronic conduction through support was verified by conducting experiments in PtCl4 solution on Pt supported on an electronically insulating material, namely alumina. While significant growth occurred in Pt supported on carbon, no detectable growth occurred in Pt supported on alumina. This observation is in complete accord with the model, and demonstrates the role of electronic transport on degradation. That is, when supported on alumina, lack of an electronically conducting path suppresses degradation even with PtCl4 present in solution. (c) 2007 The Electrochemical Society.
引用
收藏
页码:B540 / B547
页数:8
相关论文
共 50 条
  • [1] A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells
    Zhang, Shengsheng
    Yuan, Xiao-Zi
    Hin, Jason Ng Cheng
    Wang, Haijiang
    Friedrich, K. Andreas
    Schulze, Mathias
    JOURNAL OF POWER SOURCES, 2009, 194 (02) : 588 - 600
  • [2] Catalyst degradation diagnostics of proton exchange membrane fuel cells using electrochemical impedance spectroscopy
    Pivac, Ivan
    Bezmalinovic, Dario
    Barbir, Frano
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (29) : 13512 - 13520
  • [3] Catalyst layer models for proton exchange membrane fuel cells
    Chan, SH
    Tun, WA
    CHEMICAL ENGINEERING & TECHNOLOGY, 2001, 24 (01) : 51 - 57
  • [4] Catalyst layer models for proton exchange membrane fuel cells
    Chan, S.H.
    Tun, W.A.
    Chemical Engineering and Technology, 2001, 24 (01): : 51 - 57
  • [5] Mechanical degradation of proton exchange membrane along the MEA frame in proton exchange membrane fuel cells
    Qiu, Diankai
    Peng, Linfa
    Liang, Peng
    Yi, Peiyun
    Lai, Xinmin
    ENERGY, 2018, 165 : 210 - 222
  • [6] Effects of open-circuit operation on membrane and catalyst layer degradation in proton exchange membrane fuel cells
    Zhang, Shengsheng
    Yuan, Xiao-Zi
    Hin, Jason Ng Cheng
    Wang, Haijiang
    Wu, Jinfeng
    Friedrich, K. Andreas
    Schulze, Mathias
    JOURNAL OF POWER SOURCES, 2010, 195 (04) : 1142 - 1148
  • [7] Revelation of ink solvents influence mechanism in catalyst layer of proton exchange membrane fuel cells
    Lin, Rui
    Lu, Jiapeng
    Liu, Shengchu
    Hua, Shiyang
    Cai, Xin
    Friedrich, Andreas
    APPLIED SURFACE SCIENCE, 2024, 655
  • [8] The investigation of resin degradation in catalyst layer of proton exchange membrane fuel cell
    Xiao, Shaohua
    Zhang, Huamin
    JOURNAL OF POWER SOURCES, 2014, 246 : 858 - 861
  • [9] In Situ and Ex Situ Studies on the Degradation of Pd/C Catalyst for Proton Exchange Membrane Fuel Cells
    Tang, Yongfu
    Mu, Shichun
    Yu, Shengxue
    Zhao, Yufeng
    Wang, Hongchao
    Gao, Faming
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2014, 11 (05):
  • [10] Phase-change-related degradation of catalyst layers in proton-exchange-membrane fuel cells
    Hwang, Gi Suk
    Kim, Hyoungchul
    Lujan, Roger
    Mukundan, Rangachary
    Spernjak, Dusan
    Borup, Rodney L.
    Kaviany, Massoud
    Kim, Moo Hwan
    Weber, Adam Z.
    ELECTROCHIMICA ACTA, 2013, 95 : 29 - 37