Mechanism of catalyst degradation in proton exchange membrane fuel cells

被引:106
|
作者
Virkar, Anil V. [1 ]
Zhou, Yingke [1 ]
机构
[1] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA
关键词
D O I
10.1149/1.2722563
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A mechanism of catalyst particle growth in proton exchange membrane fuel cells (PEMFCs) by Ostwald ripening is presented. Particle growth occurs as a coupled process involving platinum ion transport through aqueous liquid and/or ionomer, and electron transport through a carbon support. The dominating factor in degradation of a catalyst supported on carbon is the presence of platinum ions in solution (in liquid and/or in ionomer). Experiments were conducted on commercial PEMFC electrodes in three liquids, PtCl4 solution, dilute acid solution, and deionized water. Pt particle size grew from similar to 4 nm to >20 nm after 1 week in PtCl4 solution. By contrast, no detectable growth occurred in dilute acid or in deionized water. This demonstrates that the higher the Pt ion concentration, the faster the kinetics. The role of electronic conduction through support was verified by conducting experiments in PtCl4 solution on Pt supported on an electronically insulating material, namely alumina. While significant growth occurred in Pt supported on carbon, no detectable growth occurred in Pt supported on alumina. This observation is in complete accord with the model, and demonstrates the role of electronic transport on degradation. That is, when supported on alumina, lack of an electronically conducting path suppresses degradation even with PtCl4 present in solution. (c) 2007 The Electrochemical Society.
引用
收藏
页码:B540 / B547
页数:8
相关论文
共 50 条
  • [21] Ionomer degradation in catalyst layers of anion exchange membrane fuel cells
    Li, Qihao
    Hu, Meixue
    Ge, Chuangxin
    Yang, Yao
    Xiao, Li
    Zhuang, Lin
    Abruna, Hector D.
    CHEMICAL SCIENCE, 2023, 14 (38) : 10429 - 10434
  • [22] The Influence of Membrane Thickness and Catalyst Loading on Performance of Proton Exchange Membrane Fuel Cells
    Choi, Yejung
    Platzek, Paul
    Coole, Jake
    Buche, Silvain
    Fortin, Patrick
    Journal of the Electrochemical Society, 2024, 171 (10)
  • [23] Structures of membrane electrode assembly catalyst layers for proton exchange membrane fuel cells
    Yu, Tzyy-Lung Leon
    Lin, Hsiu-Li
    Su, Po-Hao
    Wang, Guan-Wen
    Open Fuels and Energy Science Journal, 2012, 5 (01): : 28 - 38
  • [24] Cold start degradation of proton exchange membrane fuel cell: Dynamic and mechanism
    Yang, Xiaokang
    Sun, Jiaqi
    Meng, Xiangchao
    Sun, Shucheng
    Shao, Zhigang
    CHEMICAL ENGINEERING JOURNAL, 2023, 455
  • [25] Proton exchange membrane fuel cells
    Vishnyakov, V. M.
    VACUUM, 2006, 80 (10) : 1053 - 1065
  • [27] Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes
    Cleemann, L. N.
    Buazar, F.
    Li, Q.
    Jensen, J. O.
    Pan, C.
    Steenberg, T.
    Dai, S.
    Bjerrum, N. J.
    FUEL CELLS, 2013, 13 (05) : 822 - 831
  • [28] Degradation analyses of Ru85Se15 catalyst layer in proton exchange membrane fuel cells
    Zheng, Qiaoming
    Cheng, Xuan
    Jao, Ting-Chu
    Weng, Fang-Bor
    Su, Ay
    Chiang, Yu-Chun
    JOURNAL OF POWER SOURCES, 2012, 218 : 79 - 87
  • [29] Proton exchange membrane fuel cell degradation model based on catalyst transformation theory
    Ao, Yunjin
    Chen, Kui
    Laghrouche, Salah
    Depernet, Daniel
    FUEL CELLS, 2021, 21 (03) : 254 - 268
  • [30] A performance and degradation study of Nafion 212 membrane for proton exchange membrane fuel cells
    Fernandes, Adriano C.
    Ticianelli, Edson Antonio
    JOURNAL OF POWER SOURCES, 2009, 193 (02) : 547 - 554