Benzoic acid as additive: A route to inhibit the formation of cracks in catalyst layer of proton exchange membrane fuel cells

被引:0
|
作者
Liu, Pengcheng [1 ]
Yang, Daijun [1 ]
Li, Bing [1 ]
Kang, Jialun [1 ]
Zhang, Cunman [1 ]
Ming, Pingwen [1 ]
Pan, Xiangmin [2 ]
Liu, Hengzhi [3 ]
机构
[1] Tongji Univ, Clean Energy Automot Engn Ctr, Sch Automot Studies, Shanghai 201804, Peoples R China
[2] Shanghai Motor Vehicle Inspect Certificat & Techno, Shanghai 201805, Peoples R China
[3] Xiangtan Univ, Key Lab Green Organ Synth & Applicat Hunan Prov, Minist Educ,Coll Chem, Key Lab Environmentally Friendly Chem & Applicat, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Crack; Catalyst layer; Benzoic acid; Catalyst ink; Molecular dynamic simulation; Proton exchange membrane fuel cells; MOLECULAR-DYNAMICS; IONOMER ADSORPTION; CARBON-BLACK; ELECTRODE; PERFORMANCE; SOLVENT; POLYMER; DEGRADATION; SIMULATION; MORPHOLOGY;
D O I
10.1016/j.jpowsour.2023.233817
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cracks are a common defect in the catalyst layers (CLs) of proton exchange membrane fuel cells (PEMFCs), deteriorating their performance. This study proposes benzoic acid as a cracking inhibitor in the catalyst ink. The additive strengthens the network of catalyst particles by promoting attractive interaction within them. Molecular dynamics simulations demonstrate that the inhibitor facilitates the desorption of ionomer from the Pt/carbon surface, weakening the repulsion force within catalyst particles. Rheology experiments indicate that the addition of benzoic acid transforms the catalyst ink from a sol-like to a gel-like, improving its viscosity and storage modulus. The stronger attractive interactions within the inhibitor-added ink impart anti-cracking ability, preventing stress release during the drying process. Furthermore, optical microscopy reveals a significant decrease in both the crack area and the maximum length of cracks in the CL after incorporating the inhibitor. Specifically, the crack area decreases from 13% to 2%, while the maximum crack length decreases from nearly 400 mu m to 150 mu m. Single cell tests show that the inhibitor-added sample exhibits a higher peak power density of 0.893 W/cm2 compared to the standard sample's 0.873 W/cm2. Overall, this study presents an effective method for manufacturing high-quality CLs in PEMFCs, ensuring improved performance.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Image recognition of cracks and the effect in the microporous layer of proton exchange membrane fuel cells on performance
    Lan, Shunbo
    Lin, Rui
    Dong, Mengcheng
    Lu, Kai
    Lou, Mingyu
    ENERGY, 2023, 266
  • [12] Effects of liquid water on transport in the catalyst layer of proton exchange membrane fuel cells
    Min, Ting
    Zhou, Qiang
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [13] Numerical simulation of the ordered catalyst layer in cathode of Proton Exchange Membrane Fuel Cells
    Du, CY
    Cheng, XQ
    Yang, T
    Yin, GP
    Shi, PF
    ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (12) : 1411 - 1416
  • [14] Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells
    Sun, Yanyan
    Polani, Shlomi
    Luo, Fang
    Ott, Sebastian
    Strasser, Peter
    Dionigi, Fabio
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [15] Modeling an ordered nanostructured cathode catalyst layer for proton exchange membrane fuel cells
    Hussain, M. M.
    Song, D.
    Liu, Z. -S.
    Xie, Z.
    JOURNAL OF POWER SOURCES, 2011, 196 (10) : 4533 - 4544
  • [16] On the role of the silica-containing catalyst layer for proton exchange membrane fuel cells
    Jung, Chi-Young
    Yi, Jae-You
    Yi, Sung-Chul
    ENERGY, 2014, 68 : 794 - 800
  • [17] Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells
    Yanyan Sun
    Shlomi Polani
    Fang Luo
    Sebastian Ott
    Peter Strasser
    Fabio Dionigi
    Nature Communications, 12
  • [18] Parametric study of a novel cathode catalyst layer in proton exchange membrane fuel cells
    Du, C. Y.
    Yin, G. P.
    Cheng, X. Q.
    Shi, P. F.
    JOURNAL OF POWER SOURCES, 2006, 160 (01) : 224 - 231
  • [19] Progress on the durability of catalyst layer interfaces in proton-exchange membrane fuel cells
    Ma, Hailing
    Tong, Yao
    Hung, Yew Mun
    Wang, Xin
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 192 : 358 - 377
  • [20] Liquid transport in gas diffusion layer of proton exchange membrane fuel cells: Effects of microporous layer cracks
    Shi, Xin
    Jiao, Daokuan
    Bao, Zhiming
    Jiao, Kui
    Chen, Wenmiao
    Liu, Zhi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (09) : 6247 - 6258