Time Optimal Feedback Control for 3D Navier-Stokes-Voigt Equations

被引:0
|
作者
Li, Yunxiang [1 ,2 ]
Bin, Maojun [1 ]
Shi, Cuiyun [3 ]
机构
[1] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimizat, Yulin 537000, Peoples R China
[2] Hunan City Univ, Coll Sci, Yiyang 413000, Peoples R China
[3] Guilin Univ Technol Nanning, Sch Basic Sci, Nanning 530001, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 05期
关键词
3D Navier-Stokes-Voigt equations; admissible trajectories set; admissible control set; feedback control; time optimal control; NONCONVEX OPTIMAL-CONTROL; SENSITIVITY-ANALYSIS; RELAXATION; ATTRACTOR; FLOW;
D O I
10.3390/sym15051127
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we discuss a time optimal feedback control for asymmetrical 3D Navier-Stokes-Voigt equations. Firstly, we consider the existence of the admissible trajectories for the asymmetrical 3D Navier-Stokes-Voigt equations by using the well-known Cesari property and the Fillippove's theorem. Secondly, we study the existence result of a time optimal control for the feedback control systems. Lastly, asymmetrical Clarke's subdifferential inclusions and asymmetrical 3D Navier-Stokes-Voigt differential variational inequalities are given to explain our main results.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Long time dynamics for functional three-dimensional Navier-Stokes-Voigt equations
    Caraballo, T.
    Marquez-Duran, A. M.
    AIMS MATHEMATICS, 2020, 5 (06): : 5470 - 5494
  • [32] A GENERALIZED EXISTENCE THEOREM OF PULLBACK ATTRACTORS AND ITS APPLICATION TO THE 3D NON-AUTONOMOUS NAVIER-STOKES-VOIGT EQUATIONS
    Qin, Yuming
    Jiang, Huite
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2025,
  • [33] On relaxation times in the Navier-Stokes-Voigt model
    Layton, William J.
    Rebholz, Leo G.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2013, 27 (03) : 184 - 187
  • [34] EXISTENCE AND LONG-TIME BEHAVIOR OF SOLUTIONS TO NAVIER-STOKES-VOIGT EQUATIONS WITH INFINITE DELAY
    Cung The Anh
    Dang Thi Phuong Thanh
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (02) : 379 - 403
  • [35] Existence Result for a Class of Time-Fractional Nonstationary Incompressible Navier-Stokes-Voigt Equations
    Xu, Keji
    Zeng, Biao
    AXIOMS, 2024, 13 (08)
  • [36] Limit stationary statistical solutions of stochastic Navier-Stokes-Voigt equation in a 3D thin domain
    Zhong, Wenhu
    Chen, Guanggan
    Wei, Yunyun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (06):
  • [37] Thermosolutal Convection with a Navier-Stokes-Voigt Fluid
    Straughan, Brian
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (03): : 2587 - 2599
  • [38] Pullback attractors for three-dimensional Navier-Stokes-Voigt equations with delays
    Li, Haiyan
    Qin, Yuming
    BOUNDARY VALUE PROBLEMS, 2013, : 1 - 17
  • [39] Strong solutions for the Navier-Stokes-Voigt equations with non-negative density
    de Oliveira, H. B.
    Khompysh, Kh.
    Shakir, A. G.
    JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (04)
  • [40] Upper bound of decay rate for solutions to the Navier-Stokes-Voigt equations in R3
    Zhao, Caidi
    Zhu, Hongjin
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 183 - 191