Time Optimal Feedback Control for 3D Navier-Stokes-Voigt Equations

被引:0
|
作者
Li, Yunxiang [1 ,2 ]
Bin, Maojun [1 ]
Shi, Cuiyun [3 ]
机构
[1] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimizat, Yulin 537000, Peoples R China
[2] Hunan City Univ, Coll Sci, Yiyang 413000, Peoples R China
[3] Guilin Univ Technol Nanning, Sch Basic Sci, Nanning 530001, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 05期
关键词
3D Navier-Stokes-Voigt equations; admissible trajectories set; admissible control set; feedback control; time optimal control; NONCONVEX OPTIMAL-CONTROL; SENSITIVITY-ANALYSIS; RELAXATION; ATTRACTOR; FLOW;
D O I
10.3390/sym15051127
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we discuss a time optimal feedback control for asymmetrical 3D Navier-Stokes-Voigt equations. Firstly, we consider the existence of the admissible trajectories for the asymmetrical 3D Navier-Stokes-Voigt equations by using the well-known Cesari property and the Fillippove's theorem. Secondly, we study the existence result of a time optimal control for the feedback control systems. Lastly, asymmetrical Clarke's subdifferential inclusions and asymmetrical 3D Navier-Stokes-Voigt differential variational inequalities are given to explain our main results.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] ON THE STATISTICAL PROPERTIES OF THE 3D INCOMPRESSIBLE NAVIER-STOKES-VOIGT MODEL
    Levant, Boris
    Ramos, Fabio
    Titi, Edriss S.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (01) : 277 - 293
  • [22] Internal stabilization of stochastic 3D Navier-Stokes-Voigt equations with linearly multiplicative Gaussian noise
    Nguyen Van Thanh
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2019, 27 (03) : 153 - 160
  • [23] GROMOV-HAUSDORFF STABILITY OF GLOBAL ATTRACTORS FOR THE 3D INCOMPRESSIBLE NAVIER-STOKES-VOIGT EQUATIONS
    Wang, Dongze
    Yang, Xin-guang
    Miranville, Alain
    Yan, Xingjie
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (11): : 4646 - 4670
  • [24] UNIFORM ATTRACTORS OF 3D NAVIER-STOKES-VOIGT EQUATIONS WITH MEMORY AND SINGULARLY OSCILLATING EXTERNAL FORCES
    Cung The Anh
    Dang Thi Phuong Thanh
    Nguyen Duong Toan
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (01): : 1 - 23
  • [25] Time Optimal Control Problem of the 3D Navier-Stokes-α Equations
    Dang Thanh Son
    Le Thi Thuy
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (06) : 667 - 697
  • [26] Discontinuous Galerkin approximations for an optimal control problem of three-dimensional Navier-Stokes-Voigt equations
    Cung The Anh
    Tran Minh Nguyet
    NUMERISCHE MATHEMATIK, 2020, 145 (04) : 727 - 769
  • [27] Decay characterization of the solutions to the Navier-Stokes-Voigt equations with damping
    Lyu, Wenbin
    Lu, Liqing
    Wu, Shaohua
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (08)
  • [28] Decay characterization of solutions to incompressible Navier-Stokes-Voigt equations
    Liu, Jitao
    Wang, Shasha
    Xu, Wen-Qing
    ASYMPTOTIC ANALYSIS, 2024, 139 (1-2) : 61 - 87
  • [29] A subdiffusive Navier-Stokes-Voigt system
    Krasnoschok, Mykola
    Pata, Vittorino
    Siryk, Sergii, V
    Vasylyeva, Nataliya
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 409
  • [30] Regularity of uniform attractor for 3D non-autonomous Navier-Stokes-Voigt equation
    Yang, Xin-Guang
    Li, Lu
    Lu, Yongjin
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 334 : 11 - 29