Limit stationary statistical solutions of stochastic Navier-Stokes-Voigt equation in a 3D thin domain

被引:0
|
作者
Zhong, Wenhu [1 ,2 ]
Chen, Guanggan [1 ,2 ]
Wei, Yunyun [3 ]
机构
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
[2] Sichuan Normal Univ, VC & VR Key Lab Sichuan Prov, Chengdu 610068, Peoples R China
[3] Chengdu Univ Technol, Sch Math Sci, Chengdu 610059, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Stochastic Navier-Stokes-Voigt equation; Stochastic Euler equation; Thin domain; Stationary statistical solution; Limit behavior; CONVERGENCE; DYNAMICS;
D O I
10.1007/s00033-024-02370-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with limit behavior of the Navier-Stokes-Voigt equation with degenerate white noise in a 3D thin domain. Although the individual solutions may be chaotic in fluid dynamics, the stationary statistical solutions are essential to capture complex dynamical behaviors in the view of statistic. We therefore prove that the stationary statistical solution of the system converges weakly to the counterpart of the 2D stochastic Euler equation as the viscosity, the elasticity parameter and the thickness of the thin domain tend to zero.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] INVARIANT MEASURES FOR THE 3D NAVIER-STOKES-VOIGT EQUATIONS AND THEIR NAVIER-STOKES LIMIT
    Ramos, Fabio
    Titi, Edriss S.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (01) : 375 - 403
  • [2] ON THE STATISTICAL PROPERTIES OF THE 3D INCOMPRESSIBLE NAVIER-STOKES-VOIGT MODEL
    Levant, Boris
    Ramos, Fabio
    Titi, Edriss S.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (01) : 277 - 293
  • [3] On the regularity and convergence of solutions to the 3D Navier-Stokes-Voigt equations
    Cung The Anh
    Pham Thi Trang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (04) : 601 - 615
  • [4] Stabilization of 3D Navier-Stokes-Voigt equations
    Cung The Anh
    Nguyen Viet Tuan
    GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (04) : 493 - 502
  • [5] Feedback control for non-stationary 3D Navier-Stokes-Voigt equations
    Zeng, Biao
    MATHEMATICS AND MECHANICS OF SOLIDS, 2020, 25 (12) : 2210 - 2221
  • [6] Decay rate of solutions to 3D Navier-Stokes-Voigt equations in Hm spaces
    Cung The Anh
    Pham Thi Trang
    APPLIED MATHEMATICS LETTERS, 2016, 61 : 1 - 7
  • [7] Regularity of uniform attractor for 3D non-autonomous Navier-Stokes-Voigt equation
    Yang, Xin-Guang
    Li, Lu
    Lu, Yongjin
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 334 : 11 - 29
  • [8] Time Optimal Control of the Unsteady 3D Navier-Stokes-Voigt Equations
    Cung The Anh
    Tran Minh Nguyet
    APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 79 (02): : 397 - 426
  • [9] Internal stabilization of stochastic 3D Navier-Stokes-Voigt equations with linearly multiplicative Gaussian noise
    Nguyen Van Thanh
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2019, 27 (03) : 153 - 160
  • [10] Time Optimal Feedback Control for 3D Navier-Stokes-Voigt Equations
    Li, Yunxiang
    Bin, Maojun
    Shi, Cuiyun
    SYMMETRY-BASEL, 2023, 15 (05):