Limit stationary statistical solutions of stochastic Navier-Stokes-Voigt equation in a 3D thin domain

被引:0
|
作者
Zhong, Wenhu [1 ,2 ]
Chen, Guanggan [1 ,2 ]
Wei, Yunyun [3 ]
机构
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
[2] Sichuan Normal Univ, VC & VR Key Lab Sichuan Prov, Chengdu 610068, Peoples R China
[3] Chengdu Univ Technol, Sch Math Sci, Chengdu 610059, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Stochastic Navier-Stokes-Voigt equation; Stochastic Euler equation; Thin domain; Stationary statistical solution; Limit behavior; CONVERGENCE; DYNAMICS;
D O I
10.1007/s00033-024-02370-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with limit behavior of the Navier-Stokes-Voigt equation with degenerate white noise in a 3D thin domain. Although the individual solutions may be chaotic in fluid dynamics, the stationary statistical solutions are essential to capture complex dynamical behaviors in the view of statistic. We therefore prove that the stationary statistical solution of the system converges weakly to the counterpart of the 2D stochastic Euler equation as the viscosity, the elasticity parameter and the thickness of the thin domain tend to zero.
引用
收藏
页数:31
相关论文
共 50 条