Decay rate of solutions to 3D Navier-Stokes-Voigt equations in Hm spaces

被引:16
|
作者
Cung The Anh [1 ]
Pham Thi Trang [1 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, 136 Xuan Thuy, Hanoi, Vietnam
关键词
Navier-Stokes-Voigt equations; Decay rate; Fourier Splitting Method; Inductive argument; LARGE TIME BEHAVIOR; ATTRACTORS;
D O I
10.1016/j.aml.2016.04.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first prove the regularity in H-m(R-3) of weak solutions to the Navier-Stokes-Voigt equations with initial data in H-K (R-3) for all m <= K. Then we compute the upper bound of decay rate for these solutions, specifically, we prove that parallel to del(m)(u)(t)parallel to(2) + parallel to del(m+1)(u)(t)parallel to(2) <= c(1+t)(-3/2-m), for large t, when u(0) is an element of H-sigma(m+1)(R-3) boolean AND L-1(R-3), m is an element of N. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [1] On the regularity and convergence of solutions to the 3D Navier-Stokes-Voigt equations
    Cung The Anh
    Pham Thi Trang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (04) : 601 - 615
  • [2] Stabilization of 3D Navier-Stokes-Voigt equations
    Cung The Anh
    Nguyen Viet Tuan
    GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (04) : 493 - 502
  • [3] Decay characterization of the solutions to the Navier-Stokes-Voigt equations with damping
    Lyu, Wenbin
    Lu, Liqing
    Wu, Shaohua
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (08)
  • [4] Decay characterization of solutions to incompressible Navier-Stokes-Voigt equations
    Liu, Jitao
    Wang, Shasha
    Xu, Wen-Qing
    ASYMPTOTIC ANALYSIS, 2024, 139 (1-2) : 61 - 87
  • [5] Upper bound of decay rate for solutions to the Navier-Stokes-Voigt equations in R3
    Zhao, Caidi
    Zhu, Hongjin
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 183 - 191
  • [6] INVARIANT MEASURES FOR THE 3D NAVIER-STOKES-VOIGT EQUATIONS AND THEIR NAVIER-STOKES LIMIT
    Ramos, Fabio
    Titi, Edriss S.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (01) : 375 - 403
  • [7] Time Optimal Control of the Unsteady 3D Navier-Stokes-Voigt Equations
    Cung The Anh
    Tran Minh Nguyet
    APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 79 (02): : 397 - 426
  • [8] Decay characterization of solutions to Navier-Stokes-Voigt equations in terms of the initial datum
    Niche, Cesar J.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (05) : 4440 - 4453
  • [9] Time Optimal Feedback Control for 3D Navier-Stokes-Voigt Equations
    Li, Yunxiang
    Bin, Maojun
    Shi, Cuiyun
    SYMMETRY-BASEL, 2023, 15 (05):
  • [10] On the Number of Determining Volume Elements for 3D Navier-Stokes-Voigt Equations
    Nguyen Duc Huy
    Nguyen Thi Ngan
    Vu Manh Toi
    Acta Mathematica Vietnamica, 2020, 45 : 967 - 980