Decay rate of solutions to 3D Navier-Stokes-Voigt equations in Hm spaces

被引:16
|
作者
Cung The Anh [1 ]
Pham Thi Trang [1 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, 136 Xuan Thuy, Hanoi, Vietnam
关键词
Navier-Stokes-Voigt equations; Decay rate; Fourier Splitting Method; Inductive argument; LARGE TIME BEHAVIOR; ATTRACTORS;
D O I
10.1016/j.aml.2016.04.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first prove the regularity in H-m(R-3) of weak solutions to the Navier-Stokes-Voigt equations with initial data in H-K (R-3) for all m <= K. Then we compute the upper bound of decay rate for these solutions, specifically, we prove that parallel to del(m)(u)(t)parallel to(2) + parallel to del(m+1)(u)(t)parallel to(2) <= c(1+t)(-3/2-m), for large t, when u(0) is an element of H-sigma(m+1)(R-3) boolean AND L-1(R-3), m is an element of N. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [21] Strong Solutions of the Incompressible Navier-Stokes-Voigt Model
    Baranovskii, Evgenii S.
    MATHEMATICS, 2020, 8 (02)
  • [22] Internal stabilization of stochastic 3D Navier-Stokes-Voigt equations with linearly multiplicative Gaussian noise
    Nguyen Van Thanh
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2019, 27 (03) : 153 - 160
  • [23] GROMOV-HAUSDORFF STABILITY OF GLOBAL ATTRACTORS FOR THE 3D INCOMPRESSIBLE NAVIER-STOKES-VOIGT EQUATIONS
    Wang, Dongze
    Yang, Xin-guang
    Miranville, Alain
    Yan, Xingjie
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (11): : 4646 - 4670
  • [24] UNIFORM ATTRACTORS OF 3D NAVIER-STOKES-VOIGT EQUATIONS WITH MEMORY AND SINGULARLY OSCILLATING EXTERNAL FORCES
    Cung The Anh
    Dang Thi Phuong Thanh
    Nguyen Duong Toan
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (01): : 1 - 23
  • [25] Strong solutions for the Navier-Stokes-Voigt equations with non-negative density
    de Oliveira, H. B.
    Khompysh, Kh.
    Shakir, A. G.
    JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (04)
  • [26] Limit stationary statistical solutions of stochastic Navier-Stokes-Voigt equation in a 3D thin domain
    Zhong, Wenhu
    Chen, Guanggan
    Wei, Yunyun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (06):
  • [27] Decay of solutions for the 3D Navier-Stokes equations with clamping
    Liu, Hui
    Gao, Hongjun
    APPLIED MATHEMATICS LETTERS, 2017, 68 : 48 - 54
  • [28] Regularity of uniform attractor for 3D non-autonomous Navier-Stokes-Voigt equation
    Yang, Xin-Guang
    Li, Lu
    Lu, Yongjin
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 334 : 11 - 29
  • [29] Suitable weak solutions to the 3D Navier-Stokes equations are constructed with the Voigt approximation
    Berselli, Luigi C.
    Spirito, Stefano
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (05) : 3285 - 3316
  • [30] Feedback Control of Navier-Stokes-Voigt Equations by Finite Determining Parameters
    Ngan, Nguyen Thi
    Toi, Vu Manh
    ACTA MATHEMATICA VIETNAMICA, 2020, 45 (04) : 917 - 930