Stabilization of 3D Navier-Stokes-Voigt equations

被引:2
|
作者
Cung The Anh [1 ]
Nguyen Viet Tuan [2 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, 136 Xuan Thuy, Hanoi, Vietnam
[2] Sao Do Univ, Dept Math, 24 Thai Hoc 2, Chi Linh, Hai Duong Provi, Vietnam
关键词
Navier Stokes Voigt equations; stationary solution; stability; stabilization; internal feedback control; multiplicative Ito noise; EXPONENTIAL BEHAVIOR; GLOBAL ATTRACTORS; STABILIZABILITY;
D O I
10.1515/gmj-2018-0067
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider 3D Navier-Stokes-Voigt equations in smooth bounded domains with homogeneous Dirichlet boundary conditions. First, we study the existence and exponential stability of strong stationary solutions to the problem. Then we show that any unstable steady state can be exponentially stabilized by using either an internal feedback control with a support large enough or a multiplicative Ito noise of sufficient intensity.
引用
收藏
页码:493 / 502
页数:10
相关论文
共 50 条
  • [1] On the regularity and convergence of solutions to the 3D Navier-Stokes-Voigt equations
    Cung The Anh
    Pham Thi Trang
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (04) : 601 - 615
  • [2] INVARIANT MEASURES FOR THE 3D NAVIER-STOKES-VOIGT EQUATIONS AND THEIR NAVIER-STOKES LIMIT
    Ramos, Fabio
    Titi, Edriss S.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (01) : 375 - 403
  • [3] Time Optimal Control of the Unsteady 3D Navier-Stokes-Voigt Equations
    Cung The Anh
    Tran Minh Nguyet
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 79 (02): : 397 - 426
  • [4] Time Optimal Feedback Control for 3D Navier-Stokes-Voigt Equations
    Li, Yunxiang
    Bin, Maojun
    Shi, Cuiyun
    [J]. SYMMETRY-BASEL, 2023, 15 (05):
  • [5] Internal stabilization of stochastic 3D Navier-Stokes-Voigt equations with linearly multiplicative Gaussian noise
    Nguyen Van Thanh
    [J]. RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2019, 27 (03) : 153 - 160
  • [6] On the Number of Determining Volume Elements for 3D Navier-Stokes-Voigt Equations
    Nguyen Duc Huy
    Nguyen Thi Ngan
    Vu Manh Toi
    [J]. Acta Mathematica Vietnamica, 2020, 45 : 967 - 980
  • [7] Pullback dynamics and robustness for the 3D Navier-Stokes-Voigt equations with memory
    Su, Keqin
    Yang, Rong
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (02): : 928 - 946
  • [8] On the Number of Determining Volume Elements for 3D Navier-Stokes-Voigt Equations
    Nguyen Duc Huy
    Nguyen Thi Ngan
    Vu Manh Toi
    [J]. ACTA MATHEMATICA VIETNAMICA, 2020, 45 (04) : 967 - 980
  • [9] Upper bounds on the number of determining nodes for 3D Navier-Stokes-Voigt equations
    Vu Manh Toi
    Nguyen Thi Ngan
    [J]. ANNALES POLONICI MATHEMATICI, 2020, 125 (01) : 83 - 99
  • [10] Feedback control for non-stationary 3D Navier-Stokes-Voigt equations
    Zeng, Biao
    [J]. MATHEMATICS AND MECHANICS OF SOLIDS, 2020, 25 (12) : 2210 - 2221