Stabilization of 3D Navier-Stokes-Voigt equations

被引:2
|
作者
Cung The Anh [1 ]
Nguyen Viet Tuan [2 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, 136 Xuan Thuy, Hanoi, Vietnam
[2] Sao Do Univ, Dept Math, 24 Thai Hoc 2, Chi Linh, Hai Duong Provi, Vietnam
关键词
Navier Stokes Voigt equations; stationary solution; stability; stabilization; internal feedback control; multiplicative Ito noise; EXPONENTIAL BEHAVIOR; GLOBAL ATTRACTORS; STABILIZABILITY;
D O I
10.1515/gmj-2018-0067
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider 3D Navier-Stokes-Voigt equations in smooth bounded domains with homogeneous Dirichlet boundary conditions. First, we study the existence and exponential stability of strong stationary solutions to the problem. Then we show that any unstable steady state can be exponentially stabilized by using either an internal feedback control with a support large enough or a multiplicative Ito noise of sufficient intensity.
引用
收藏
页码:493 / 502
页数:10
相关论文
共 50 条
  • [21] STABILITY AND STABILIZATION FOR THE THREE-DIMENSIONAL NAVIER-STOKES-VOIGT EQUATIONS WITH UNBOUNDED VARIABLE DELAY
    Toi, Vu Manh
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (04): : 1007 - 1023
  • [22] A subdiffusive Navier-Stokes-Voigt system
    Krasnoschok, Mykola
    Pata, Vittorino
    Siryk, Sergii, V
    Vasylyeva, Nataliya
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2020, 409 (409)
  • [23] Regularity of uniform attractor for 3D non-autonomous Navier-Stokes-Voigt equation
    Yang, Xin-Guang
    Li, Lu
    Lu, Yongjin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 334 : 11 - 29
  • [24] Feedback Control of Navier-Stokes-Voigt Equations by Finite Determining Parameters
    Ngan, Nguyen Thi
    Toi, Vu Manh
    [J]. ACTA MATHEMATICA VIETNAMICA, 2020, 45 (04) : 917 - 930
  • [25] On relaxation times in the Navier-Stokes-Voigt model
    Layton, William J.
    Rebholz, Leo G.
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2013, 27 (03) : 184 - 187
  • [26] Optimal Control of the Instationary Three Dimensional Navier-Stokes-Voigt Equations
    Cung The Anh
    Tran Minh Nguyet
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (04) : 415 - 439
  • [27] Optimal Control of Time-Periodic Navier-Stokes-Voigt Equations
    Anh, Cung The
    Nguyet, Tran Minh
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (13) : 1588 - 1610
  • [28] Feedback Control of Navier-Stokes-Voigt Equations by Finite Determining Parameters
    Nguyen Thi Ngan
    Vu Manh Toi
    [J]. Acta Mathematica Vietnamica, 2020, 45 : 917 - 930
  • [29] Thermosolutal Convection with a Navier-Stokes-Voigt Fluid
    Straughan, Brian
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (03): : 2587 - 2599
  • [30] Pullback attractors for three-dimensional Navier-Stokes-Voigt equations with delays
    Li, Haiyan
    Qin, Yuming
    [J]. BOUNDARY VALUE PROBLEMS, 2013, : 1 - 17