SD-Pose: Structural Discrepancy Aware Category-Level 6D Object Pose Estimation

被引:4
|
作者
Li, Guowei [1 ,2 ]
Zhu, Dongchen [1 ,2 ]
Zhang, Guanghui [1 ]
Shi, Wenjun [1 ]
Zhang, Tianyu [1 ,2 ]
Zhang, Xiaolin [1 ,2 ,3 ,4 ,5 ]
Li, Jiamao [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Transducer Technol, Bion Vis Syst Lab, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Xiongan Inst Innovat, Xiongan 071700, Peoples R China
[4] Univ Sci & Technol China, Hefei 230027, Anhui, Peoples R China
[5] ShanghaiTech Univ, Shanghai 201210, Peoples R China
来源
2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV) | 2023年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/WACV56688.2023.00564
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Category-level 6D object pose estimation aims to predict the full pose and size information for previously unseen instances from known categories, which is an essential portion of robot grasping and augmented reality. However, the core challenge of this task still is the enormous shape variation within each category. With regard to the challenge, we propose a novel framework SD-Pose, which utilizes the instance-category structural discrepancy and the potential geometric-semantic association to enhance the exploration of the intra-class shape information. Specifically, an information exchange augmentation (IEA) module is introduced to supplement the instance-category structural information by their structural discrepancy, thus facilitating the enhanced geometric information to contain both the character of instance shape and the commonality of category structure. For complementing the deficiencies of structural information adaptively, a semantic dynamic fusion (SDF) module is further designed to fuse semantic and geometric features. Finally, the proposed SD-Pose framework equipped with the IEA and SDF modules hierarchically supplements instance-category structural information in a stacked manner and achieves state-of-the-art performance on the CAMERA25 and REAL275 datasets.
引用
收藏
页码:5674 / 5683
页数:10
相关论文
共 50 条
  • [41] GS-Pose: Category-Level Object Pose Estimation via Geometric and Semantic Correspondence
    Wang, Pengyuan
    Ikeda, Takuya
    Lee, Robert
    Nishiwaki, Koichi
    COMPUTER VISION - ECCV 2024, PT XXVII, 2025, 15085 : 108 - 126
  • [42] HS-Pose: Hybrid Scope Feature Extraction for Category-level Object Pose Estimation
    Zheng, Linfang
    Wang, Chen
    Sun, Yinghan
    Dasgupta, Esha
    Chen, Hua
    Leonardis, Ales
    Zhang, Wei
    Chang, Hyung Jin
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 17163 - 17173
  • [43] StereoPose: Category-Level 6D Transparent Object Pose Estimation from Stereo Images via Back-View NOCS
    Chen, Kai
    James, Stephen
    Sui, Congying
    Liu, Yun-Hui
    Abbeel, Pieter
    Dou, Qi
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 2855 - 2861
  • [44] Optimal Pose and Shape Estimation for Category-level 3D Object Perception
    Shi, Jingnan
    Yang, Heng
    Carlone, Luca
    ROBOTICS: SCIENCE AND SYSTEM XVII, 2021,
  • [45] VI-Net: Boosting Category-level 6D Object Pose Estimation via Learning Decoupled Rotations on the Spherical Representations
    Lin, Jiehong
    Wei, Zewei
    Zhang, Yabin
    Jia, Kui
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 13955 - 13965
  • [46] Open-Vocabulary Category-Level Object Pose and Size Estimation
    Cai, Junhao
    He, Yisheng
    Yuan, Weihao
    Zhu, Siyu
    Dong, Zilong
    Bo, Liefeng
    Chen, Qifeng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (09): : 7661 - 7668
  • [47] Keypoint-Based Disentangled Pose Network for Category-Level 6-D Object Pose Tracking
    Sun, Shantong
    Liu, Rongke
    Sun, Shuqiao
    Park, Unsang
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2022, 42 (05) : 28 - 36
  • [48] Category-Level 6-D Object Pose Estimation With Shape Deformation for Robotic Grasp Detection
    Yu, Sheng
    Zhai, Di-Hua
    Guan, Yuyin
    Xia, Yuanqing
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1857 - 1871
  • [49] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [50] Corr-Track: Category-Level 6D Pose Tracking with Soft-Correspondence Matrix Estimation
    Cao, Xin
    Li, Jia
    Zhao, Panpan
    Li, Jiachen
    Qin, Xueying
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (05) : 2173 - 2183