SD-Pose: Structural Discrepancy Aware Category-Level 6D Object Pose Estimation

被引:4
|
作者
Li, Guowei [1 ,2 ]
Zhu, Dongchen [1 ,2 ]
Zhang, Guanghui [1 ]
Shi, Wenjun [1 ]
Zhang, Tianyu [1 ,2 ]
Zhang, Xiaolin [1 ,2 ,3 ,4 ,5 ]
Li, Jiamao [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Transducer Technol, Bion Vis Syst Lab, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Xiongan Inst Innovat, Xiongan 071700, Peoples R China
[4] Univ Sci & Technol China, Hefei 230027, Anhui, Peoples R China
[5] ShanghaiTech Univ, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/WACV56688.2023.00564
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Category-level 6D object pose estimation aims to predict the full pose and size information for previously unseen instances from known categories, which is an essential portion of robot grasping and augmented reality. However, the core challenge of this task still is the enormous shape variation within each category. With regard to the challenge, we propose a novel framework SD-Pose, which utilizes the instance-category structural discrepancy and the potential geometric-semantic association to enhance the exploration of the intra-class shape information. Specifically, an information exchange augmentation (IEA) module is introduced to supplement the instance-category structural information by their structural discrepancy, thus facilitating the enhanced geometric information to contain both the character of instance shape and the commonality of category structure. For complementing the deficiencies of structural information adaptively, a semantic dynamic fusion (SDF) module is further designed to fuse semantic and geometric features. Finally, the proposed SD-Pose framework equipped with the IEA and SDF modules hierarchically supplements instance-category structural information in a stacked manner and achieves state-of-the-art performance on the CAMERA25 and REAL275 datasets.
引用
收藏
页码:5674 / 5683
页数:10
相关论文
共 50 条
  • [21] SOCS: Semantically-aware Object Coordinate Space for Category-Level 6D Object Pose Estimation under Large Shape Variations
    Wan, Boyan
    Shi, Yifei
    Xu, Kai
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 14019 - 14028
  • [22] Self-Supervised Category-Level 6D Object Pose Estimation with Deep Implicit Shape Representation
    Peng, Wanli
    Yan, Jianhang
    Wen, Hongtao
    Sun, Yi
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 2082 - 2090
  • [23] Attention-guided RGB-D Fusion Network for Category-level 6D Object Pose Estimation
    Wang, Hao
    Li, Weiming
    Kim, Jiyeon
    Wang, Qiang
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 10651 - 10658
  • [24] Category-Level Object Pose Estimation with Statistic Attention
    Jiang, Changhong
    Mu, Xiaoqiao
    Zhang, Bingbing
    Liang, Chao
    Xie, Mujun
    SENSORS, 2024, 24 (16)
  • [25] SAR-Net: Shape Alignment and Recovery Network for Category-level 6D Object Pose and Size Estimation
    Lin, Haitao
    Liu, Zichang
    Cheang, Chilam
    Fu, Yanwei
    Guo, Guodong
    Xue, Xiangyang
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6697 - 6707
  • [26] Omni6D: Large-Vocabulary 3D Object Dataset for Category-Level 6D Object Pose Estimation
    Zhang, Mengchen
    Wu, Tong
    Wang, Tai
    Wang, Tengfei
    Liu, Ziwei
    Lin, Dahua
    COMPUTER VISION - ECCV 2024, PT XXV, 2025, 15083 : 216 - 232
  • [27] Category-Level 6D Object Pose Estimation in the Wild: A Semi-Supervised Learning Approach and A New Dataset
    Fu, Yang
    Wang, Xiaolong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [28] Sca-pose: category-level 6D pose estimation with adaptive shape prior based on CNN and graph convolution
    Zuo, Guoyu
    Yu, Shan
    Yu, Shuangyue
    Liu, Hong
    Zhao, Min
    INTELLIGENT SERVICE ROBOTICS, 2025, 18 (02) : 351 - 361
  • [29] A Visual Navigation Perspective for Category-Level Object Pose Estimation
    Guo, Jiaxin
    Zhong, Fangxun
    Xiong, Rong
    Liu, Yunhui
    Wang, Yue
    Liao, Yiyi
    COMPUTER VISION - ECCV 2022, PT VI, 2022, 13666 : 123 - 141
  • [30] iCaps: Iterative Category-Level Object Pose and Shape Estimation
    Deng, Xinke
    Geng, Junyi
    Bretl, Timothy
    Xiang, Yu
    Fox, Dieter
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02): : 1784 - 1791