Optimal Pose and Shape Estimation for Category-level 3D Object Perception

被引:0
|
作者
Shi, Jingnan [1 ]
Yang, Heng [1 ]
Carlone, Luca [1 ]
机构
[1] MIT, Lab Informat & Decis Syst LIDS, Cambridge, MA 02139 USA
关键词
MODELS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a category-level perception problem, where one is given 3D sensor data picturing an object of a given category (e.g., a car), and has to reconstruct the pose and shape of the object despite intra-class variability (i.e., different car models have different shapes). We consider an active shape model, where -for an object category- we are given a library of potential CAD models describing objects in that category, and we adopt a standard formulation where pose and shape estimation are formulated as a non-convex optimization. Our first contribution is to provide the first certifiably optimal solver for pose and shape estimation. In particular, we show that rotation estimation can be decoupled from the estimation of the object translation and shape, and we demonstrate that (i) the optimal object rotation can be computed via a tight (small-size) semidefinite relaxation, and (ii) the translation and shape parameters can be computed in closed-form given the rotation. Our second contribution is to add an outlier rejection layer to our solver, hence making it robust to a large number of misdetections. Towards this goal, we wrap our optimal solver in a robust estimation scheme based on graduated non-convexity. To further enhance robustness to outliers, we also develop the first graph-theoretic formulation to prune outliers in category-level perception, which removes outliers via convex hull and maximum clique computations; the resulting approach is robust to 70 - 90% outliers. Our third contribution is an extensive experimental evaluation. Besides providing an ablation study on a simulated dataset and on the PASCAL3D+ dataset, we combine our solver with a deep-learned keypoint detector, and show that the resulting approach improves over the state of the art in vehicle pose estimation in the ApolloScape datasets.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Optimal and Robust Category-Level Perception: Object Pose and Shape Estimation From 2-D and 3-D Semantic Keypoints
    Shi, Jingnan
    Yang, Heng
    Carlone, Luca
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2023, 39 (05) : 4131 - 4151
  • [2] iCaps: Iterative Category-Level Object Pose and Shape Estimation
    Deng, Xinke
    Geng, Junyi
    Bretl, Timothy
    Xiang, Yu
    Fox, Dieter
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02): : 1784 - 1791
  • [3] Category-Level Metric Scale Object Shape and Pose Estimation
    Lee, Taeyeop
    Lee, Byeong-Uk
    Kim, Myungchul
    Kweon, I. S.
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) : 8575 - 8582
  • [4] Category-Level Articulated Object Pose Estimation
    Li, Xiaolong
    Wang, He
    Yi, Li
    Guibas, Leonidas
    Abbott, A. Lynn
    Song, Shuran
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 3703 - 3712
  • [5] Category-Level Object Pose Estimation with Statistic Attention
    Jiang, Changhong
    Mu, Xiaoqiao
    Zhang, Bingbing
    Liang, Chao
    Xie, Mujun
    [J]. SENSORS, 2024, 24 (16)
  • [6] Category-Level 6-D Object Pose Estimation With Shape Deformation for Robotic Grasp Detection
    Yu, Sheng
    Zhai, Di-Hua
    Guan, Yuyin
    Xia, Yuanqing
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 15
  • [7] An efficient network for category-level 6D object pose estimation
    Sun, Shantong
    Liu, Rongke
    Sun, Shuqiao
    Yang, Xinxin
    Lu, Guangshan
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (07) : 1643 - 1651
  • [8] An efficient network for category-level 6D object pose estimation
    Shantong Sun
    Rongke Liu
    Shuqiao Sun
    Xinxin Yang
    Guangshan Lu
    [J]. Signal, Image and Video Processing, 2021, 15 : 1643 - 1651
  • [9] CatFormer: Category-Level 6D Object Pose Estimation with Transformer
    Yu, Sheng
    Zhai, Di-Hua
    Xia, Yuanqing
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 7, 2024, : 6808 - 6816
  • [10] RANSAC Optimization for Category-level 6D Object Pose Estimation
    Chen, Ying
    Kang, Guixia
    Wang, Yiping
    [J]. 2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 50 - 56