Least squares estimation of a quasiconvex regression function

被引:0
|
作者
Mukherjee, Somabha [1 ,2 ]
Patra, Rohit K. [1 ,2 ]
Johnson, Andrew L. [3 ]
Morita, Hiroshi [4 ]
机构
[1] Natl Univ Singapore, Dept Stat & Data Sci, Block S16,Level 7,6 Sci Dr 2, Singapore 117546, Singapore
[2] Univ Florida, Dept Stat, Gainesville, FL USA
[3] Texas A&M Univ, Ind & Syst Engn, College Stn, TX USA
[4] Osaka Univ, Grad Sch Informat Sci & Technol, Osaka, Japan
基金
美国国家科学基金会;
关键词
convex input requirement sets; mixed-integer quadratic program; nonparametric least squares; production function; shape restriction; sharp oracle inequality; ISOTONIC REGRESSION; ORACLE INEQUALITIES; RISK BOUNDS; ALGORITHM; SELECTION;
D O I
10.1093/jrsssb/qkad133
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a new approach for the estimation of a multivariate function based on the economic axioms of quasiconvexity (and monotonicity). On the computational side, we prove the existence of the quasiconvex constrained least squares estimator (LSE) and provide a characterisation of the function space to compute the LSE via a mixed-integer quadratic programme. On the theoretical side, we provide finite sample risk bounds for the LSE via a sharp oracle inequality. Our results allow for errors to depend on the covariates and to have only two finite moments. We illustrate the superior performance of the LSE against some competing estimators via simulation. Finally, we use the LSE to estimate the production function for the Japanese plywood industry and the cost function for hospitals across the US.
引用
收藏
页码:512 / 534
页数:23
相关论文
共 50 条