A study on the least squares estimator of multivariate isotonic regression function

被引:1
|
作者
Bagchi, Pramita [1 ]
Dhar, Subhra Sankar [2 ]
机构
[1] George Mason Univ, Dept Stat, Fairfax, VA 22030 USA
[2] IIT Kanpur, Dept Math & Stat, Kanpur, Uttar Pradesh, India
关键词
consistency; convex function; cumulative sum diagram; nonstandard asymptotic distribution; rate of convergence; CONFIDENCE-INTERVALS; MONOTONE; CONSISTENCY; INFERENCE;
D O I
10.1111/sjos.12459
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the problem of pointwise estimation of f in a multivariate isotonic regression model Z=f(X-1, horizontal ellipsis ,X-d)+epsilon, where Z is the response variable, f is an unknown nonparametric regression function, which is isotonic with respect to each component, and epsilon is the error term. In this article, we investigate the behavior of the least squares estimator of f. We generalize the greatest convex minorant characterization of isotonic regression estimator for the multivariate case and use it to establish the asymptotic distribution of properly normalized version of the estimator. Moreover, we test whether the multivariate isotonic regression function at a fixed point is larger (or smaller) than a specified value or not based on this estimator, and the consistency of the test is established. The practicability of the estimator and the test are shown on simulated and real data as well.
引用
收藏
页码:1192 / 1221
页数:30
相关论文
共 50 条
  • [1] CHARACTERIZATION OF THE LEAST SQUARES ESTIMATOR: MIS-SPECIFIED MULTIVARIATE ISOTONIC REGRESSION MODEL WITH DEPENDENT ERRORS
    Bagchi, Pramita
    Dhar, Subhra sankar
    [J]. THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 110 : 143 - 158
  • [2] Multivariate least-trimmed squares regression estimator
    Jung, KM
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 48 (02) : 307 - 316
  • [3] Correcting an estimator of a multivariate monotone function with isotonic regression
    Westling, Ted
    van der Laan, Mark J.
    Carone, Marco
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (02): : 3032 - 3069
  • [4] Least Squares Isotonic Regression in Two Dimensions
    J. Spouge
    H. Wan
    W.J. Wilbur
    [J]. Journal of Optimization Theory and Applications, 2003, 117 : 585 - 605
  • [5] Least squares isotonic regression in two dimensions
    Spouge, J
    Wan, H
    Wilbur, WJ
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 117 (03) : 585 - 605
  • [6] NONPARAMETRIC LEAST SQUARES ESTIMATION OF A MULTIVARIATE CONVEX REGRESSION FUNCTION
    Seijo, Emilio
    Sen, Bodhisattva
    [J]. ANNALS OF STATISTICS, 2011, 39 (03): : 1633 - 1657
  • [7] The multivariate least-trimmed squares estimator
    Agullo, Jose
    Croux, Christophe
    Van Aelst, Stefan
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (03) : 311 - 338
  • [8] Consistency of the least weighted squares regression estimator
    Masícek, L
    [J]. THEORY AND APPLICATION OF RECENT ROBUST METHODS, 2004, : 183 - 194
  • [9] Consistency for the least squares estimator in nonparametric regression
    VandeGeer, S
    Wegkamp, M
    [J]. ANNALS OF STATISTICS, 1996, 24 (06): : 2513 - 2523
  • [10] On the computation of the multivariate structured total least squares estimator
    Markovsky, I
    Van Huffel, S
    Kukush, A
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2004, 11 (5-6) : 591 - 608