Least squares estimation of a quasiconvex regression function

被引:0
|
作者
Mukherjee, Somabha [1 ,2 ]
Patra, Rohit K. [1 ,2 ]
Johnson, Andrew L. [3 ]
Morita, Hiroshi [4 ]
机构
[1] Natl Univ Singapore, Dept Stat & Data Sci, Block S16,Level 7,6 Sci Dr 2, Singapore 117546, Singapore
[2] Univ Florida, Dept Stat, Gainesville, FL USA
[3] Texas A&M Univ, Ind & Syst Engn, College Stn, TX USA
[4] Osaka Univ, Grad Sch Informat Sci & Technol, Osaka, Japan
基金
美国国家科学基金会;
关键词
convex input requirement sets; mixed-integer quadratic program; nonparametric least squares; production function; shape restriction; sharp oracle inequality; ISOTONIC REGRESSION; ORACLE INEQUALITIES; RISK BOUNDS; ALGORITHM; SELECTION;
D O I
10.1093/jrsssb/qkad133
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a new approach for the estimation of a multivariate function based on the economic axioms of quasiconvexity (and monotonicity). On the computational side, we prove the existence of the quasiconvex constrained least squares estimator (LSE) and provide a characterisation of the function space to compute the LSE via a mixed-integer quadratic programme. On the theoretical side, we provide finite sample risk bounds for the LSE via a sharp oracle inequality. Our results allow for errors to depend on the covariates and to have only two finite moments. We illustrate the superior performance of the LSE against some competing estimators via simulation. Finally, we use the LSE to estimate the production function for the Japanese plywood industry and the cost function for hospitals across the US.
引用
收藏
页码:512 / 534
页数:23
相关论文
共 50 条
  • [41] Comparison of the fuzzy regression analysis and the least squares regression method to the electrical load estimation
    Zalewski, W
    MELECON '98 - 9TH MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, VOLS 1 AND 2, 1998, : 207 - +
  • [42] LEAST MEDIAN OF SQUARES REGRESSION
    ROUSSEEUW, PJ
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1984, 79 (388) : 871 - 880
  • [43] Least Squares Percentage Regression
    Tofallis, Chris
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2008, 7 (02) : 526 - 534
  • [44] Partial least squares regression
    deJong, S
    Phatak, A
    RECENT ADVANCES IN TOTAL LEAST SQUARES TECHNIQUES AND ERRORS-IN-VARIABLES MODELING, 1997, : 25 - 36
  • [45] LINEAR LEAST SQUARES REGRESSION
    WATSON, GS
    ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (06): : 1679 - &
  • [46] Smooth Nonparametric Copula Estimation with Least Squares Support Vector Regression
    Wang, Yongqiao
    NEURAL PROCESSING LETTERS, 2013, 38 (01) : 81 - 96
  • [47] Time Domain BRS Estimation: Least Squares versus Quantile Regression
    Gouveia, S.
    Rocha, C.
    Rocha, A. P.
    Silva, M. E.
    COMPUTING IN CARDIOLOGY 2010, VOL 37, 2010, 37 : 931 - 934
  • [48] Least squares type estimation for Cox regression model and specification error
    Gradowska, P. L.
    Cooke, R. M.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (07) : 2288 - 2302
  • [49] Dental Age Estimation in East Asian Population with Least Squares Regression
    Tao, Jiang
    Chen, Mufan
    Wang, Jian
    Liu, Lin
    Hassanien, Aboul Ella
    Xiao, Kai
    INTERNATIONAL CONFERENCE ON ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS (AMLTA2018), 2018, 723 : 653 - 660
  • [50] Least-squares estimation in linear regression models with vague concepts
    Kraetschmer, Volker
    FUZZY SETS AND SYSTEMS, 2006, 157 (19) : 2579 - 2592