Car Detection for Smart Parking Systems Based on Improved YOLOv5

被引:0
|
作者
Nguyen, Duy-Linh [1 ]
Vo, Xuan-Thuy [1 ]
Priadana, Adri [1 ]
Jo, Kang-Hyun [1 ]
机构
[1] Univ Ulsan, Dept Elect Elect & Comp Engn, Ulsan 44610, South Korea
基金
新加坡国家研究基金会;
关键词
Convolutional neural network (CNN); EfficientNet; PP-LCNet; parking management; YOLOv5;
D O I
10.1142/S2196888823500185
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, YOLOv5 is one of the most popular object detection network architectures used in real-time and industrial systems. Traffic management and regulation are typical applications. To take advantage of the YOLOv5 network and develop a parking management tool, this paper proposes a car detection network based on redesigning the YOLOv5 network architecture. This research focuses on network parameter optimization using lightweight modules from EfficientNet and PP-LCNet architectures. On the other hand, this work also presents an aerial view dataset for car detection tasks in the parking, named the AVPL. The proposed network is trained and evaluated on two benchmark datasets which are the Car Parking Lot Dataset and the Pontifical Catholic University of Parana+ Dataset and one proposed dataset. The experiments are reported on mAP@0.5 and mAP@0.5:0.95 measurement units. As a result, this network achieves the best performances at 95.8%, 97.4%, and 97.0% of mAP@0.5 on the Car Parking Lot Dataset, the Pontifical Catholic University of Parana+ Dataset, and the proposed AVPL dataset, respectively. A set of demonstration videos and the proposed dataset are available here: https://bit.ly/3YUoSwi.
引用
收藏
页码:195 / 209
页数:15
相关论文
共 50 条
  • [31] Metal surface defect detection based on improved YOLOv5
    Zhou, Chuande
    Lu, Zhenyu
    Lv, Zhongliang
    Meng, Minghui
    Tan, Yonghu
    Xia, Kewen
    Liu, Kang
    Zuo, Hailun
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [32] Small gastric polyp detection based on the improved YOLOv5
    Wu, Linfei
    Liu, Jin
    Yang, Haima
    Huang, Bo
    Liu, Haishan
    Cheng, Shaowei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (28) : 71773 - 71788
  • [33] Small Object Detection Method based on Improved YOLOv5
    Gao, Tianyu
    Wushouer, Mairidan
    Tuerhong, Gulanbaier
    2022 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, HUMAN-COMPUTER INTERACTION AND ARTIFICIAL INTELLIGENCE, VRHCIAI, 2022, : 144 - 149
  • [34] Lightweight highland barley detection based on improved YOLOv5
    Cai, Minghui
    Deng, Hui
    Cai, Jianwei
    Guo, Weipeng
    Hu, Zhipeng
    Yu, Dongzheng
    Zhang, Houxi
    PLANT METHODS, 2025, 21 (01)
  • [35] Detection of River Floating Garbage Based on Improved YOLOv5
    Yang, Xingshuai
    Zhao, Jingyi
    Zhao, Li
    Zhang, Haiyang
    Li, Li
    Ji, Zhanlin
    Ganchev, Ivan
    MATHEMATICS, 2022, 10 (22)
  • [36] An infrared vehicle detection method based on improved YOLOv5
    Zhang X.
    Zhao H.
    Liu W.
    Zhao Y.
    Guan S.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2023, 52 (08):
  • [37] Detection of Cigar Defect Based on the Improved YOLOv5 Algorithm
    Yang, Xinan
    Gao, Sen
    Xia, Chen
    Zhang, Bo
    Chen, Rui
    Gao, Jie
    Zhu, Wenkui
    2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024, 2024, : 99 - 106
  • [38] A Pedestrian Detection Network Model Based on Improved YOLOv5
    Li, Ming-Lun
    Sun, Guo-Bing
    Yu, Jia-Xiang
    ENTROPY, 2023, 25 (02)
  • [39] Blood Cell Detection Method Based on Improved YOLOv5
    Guo, Yecai
    Zhang, Mengyao
    IEEE ACCESS, 2023, 11 : 67987 - 67995
  • [40] Ship Target Detection Algorithm Based on Improved YOLOv5
    Zhou, Junchi
    Jiang, Ping
    Zou, Airu
    Chen, Xinglin
    Hu, Wenwu
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (08)